精英家教网 > 高中数学 > 题目详情
已知点P是抛物线x2=4y上的动点,点P在直线y+1=0上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小值是(  )
分析:先根据抛物线方程求得焦点和准线方程,可把问题转化为P到准线与P到A点距离之和最小,进而根据抛物线的定义可知抛物线中P到准线的距离等于P到焦点的距离,进而推断出P、A、F三点共线时|PF|+|PA|距离之和最小,利用两点间距离公式求得|FA|,则|PA|+|PM|可求.
解答:解:抛物线的焦点坐标F(0,1),准线方程为y=-1.根据抛物线的定义可知|PM|=|PF|,所以|PA|+|PM|=|PA|+|PF|≥|AF|,即当A,P,F三点共线时,所以最小值为
42+(2-1)2
17

故选A.
点评:本题主要考查了抛物线的简单性质.考查了学生数形结合的思想和分析推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线x2=2y上的一动点,l为准线,过点P作直线l的垂线,垂足为N,已知定点M(2,0),则当点P在该抛物线上移动时,|PM|+|PN|的最小值等于(  )
A、
17
2
B、3
C、
5
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线x2=2y上的一动点,焦点为F,若定点M(1,2),则当P点在抛物线上移动时,|PM|+|PF|的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)已知点P是抛物线x2=4y上的一个动点,则点P到点M(2,0)的距离与点P到该抛物线准线的距离之和的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线x2=4y上一个动点,过点P作圆x2+(y-4)2=1的两条切线,切点分别为M,N,则线段MN长度的最小值是
33
3
33
3

查看答案和解析>>

同步练习册答案