精英家教网 > 高中数学 > 题目详情
17.某工厂生产的废气经过过虑后排放,过虑过程中废气的污染物数量P(单位:毫克/升)与时间t(单位:小时)间的关系为P=P0e-kt(P0,k均为正常数).如果经过6个小时过虑还剩80%的污染物,为了使剩余污染物不高于51.2%,则至少需要多少小时?

分析 先利用函数关系式,结合经过6个小时过虑还剩80%的污染物,即可求出k;P0e-kt≤51.2%P0可化为:${e}^{\frac{t}{6}ln0.8}$≤0.512,解得答案.

解答 解:由题意,经过6个小时过虑还剩80%的污染物,
∵P=P0e-kt
∴80%P0=P0e-6k
∴k=-$\frac{1}{6}$ln0.8;
∴P0e-kt≤51.2%P0可化为:${e}^{\frac{t}{6}ln0.8}$≤0.512,
则${0.8}^{\frac{t}{6}}$≤0.512=0.83
即t≥18
即为了使剩余污染物不高于51.2%,则至少需要18小时

点评 本题考查函数模型的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图([x]表示不超过x的最大整数),则输出S的值为(  )
A.4B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=cos2x+6cos($\frac{π}{2}$-x)的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式ax2+bx+c>0的解集为(-2,1),则不等式cx2-bx+a<0的解集是(-∞,-1)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中BC=$\frac{\sqrt{2}}{2}$.
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“lnx<1”是“x<e”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{{5\sqrt{30}}}{2}$,且($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=-15,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上的奇函数,则一定有(  )
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°
(1)求椭圆C的离心率;
(2)若a=2,求△AF1B的面积.

查看答案和解析>>

同步练习册答案