精英家教网 > 高中数学 > 题目详情

【题目】某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:

第一种,每天支付元,没有奖金;

第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;

第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的.

1)工作,记三种付费方式薪酬总金额依次为,写出关于的表达式;

2)该学生在暑假期间共工作天,他会选择哪种付酬方式?

【答案】1;(2)第三种,理由见解析.

【解析】

1)三种支付方式每天支付的金额依次为数列,可知数列为常数数列,数列是以为首项,以为公差的等差数列,数列是以为首项,以为公比的等比数列,利用等差数列和等比数列求和公式可计算出关于的表达式;

2)利用(1)中的结论,计算出的值,比较大小后可得出结论.

1)设三种支付方式每天支付的金额依次为数列

它们的前项和分别为

第一种付酬方式每天所付金额组成数列为常数列,且,所以

第二种付酬方式每天所付金额组成数列是以为首项,以为公差的等差数列,

所以

第三种付酬方式每天所付金额组成数列是以为首项,以为公比的等比数列,

所以

2)由(1)知,当时,

,则.

因此,该学生在暑假期间共工作天,选第三种付酬方式较好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+﹣1nan=2n﹣1,则{an}的前60项和为( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是二次函数,不等式的解集为,且在区间上的最小值是4.

1)求的解析式;

2)求上的最大值、最小值的解析式;

3)设,若对任意均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

岁以下

岁以上(含岁)

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;

(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求岁以下人数的分布列和期望;

(3)在接受调查的人中,有人给这项活动打出的分数如下: ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.

(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,X的分布列及数学期望;

(Ⅱ)求教师甲在一场比赛中获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线的焦点是,准线是,点是抛物线上一点,则经过点且与相切的圆共( )

A. 0个 B. 1个 C. 2个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过点的直线分别与曲线交于两点,直线的斜率存在,且倾斜角互补,证明:直线的斜率为定值.

查看答案和解析>>

同步练习册答案