精英家教网 > 高中数学 > 题目详情
设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:
①若m?β,α⊥β,则m⊥α;②若m∥α,m⊥β,则α⊥β;
③若α⊥β,α⊥γ,则β⊥γ;④若α∩γ=m,β∩γ=n,m∥n,则α∥β.
上面命题中,真命题的序号是
.       (写出所有真命题的序号).
分析:①根据空间中线面的位置关系可得:m⊥α或者m∥α或者m?α;
②根据面面垂直的判定定理可知α⊥β;
③根据空间中平面与平面的位置关系可得:β⊥γ或者β与γ相交或者β∥γ;
④根据三棱柱的三个侧面可得α与β相交,根据四棱柱的四个侧面可得α∥β.
解答:解:①若m?β,α⊥β,则根据空间中线面的位置关系可得:m⊥α或者m∥α或者m?α,所以①错误;
②若m∥α,m⊥β,则根据面面垂直的判定定理可知α⊥β,所以②正确;
③若α⊥β,α⊥γ,则根据空间中平面与平面的位置关系可得:β⊥γ或者β与γ相交或者β∥γ,所以③错误;
④若α∩γ=m,β∩γ=n,m∥n,则可以根据三棱柱的三个侧面可得α与β相交,根据四棱柱的四个侧面可得α∥β,所以④错误.
故答案为:②.
点评:解决此类问题的关键是熟练掌握有关的定理与空间中点、线、面得位置关系,考查学生分析问题解决问题的能力与空间想象能力、逻辑推理能力,此题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、设m,n是两条不同的直线,α,β,γ是三个互不相同的平面,给出下列命题:①若m?β,α⊥β,则m⊥α;②若α∩γ=m,β∩γ=n,α∥β,则m∥n;③若m∥n,m⊥α,n⊥β,则α∥β;④若α⊥γ,β⊥γ,则α∥β,其中正确的命题的序号为
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

8、设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:
①若m?β,α⊥β,则m⊥α;
②若α∥β,m?α,则m∥β;
③若n⊥α,n⊥β,m⊥α,则m⊥β;
④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

5、4.设m、n是两条不同的直线,α、β是两相没的平面,则下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵溪市模拟)设m、n是两条不同的直线α,β,γ,是三个不同的平面,下列四个命题中正确的序号是(  )
①若m⊥α,n∥α,则m⊥n     
②若α⊥γ,β⊥γ,则α∥β   
③若m∥α,n∥α,则m∥n    
④若α∥β,β∥γ,m⊥α,则m⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不同的平面.考查下列命题,其中不正确的命题有
①③④
①③④
.(填上所有符合条件命题的序号)
①m⊥α,n?β,m⊥n⇒α⊥β;      ②α∥β,m⊥α,n∥β⇒m⊥n;
③α⊥β,m⊥α,n∥β⇒m⊥n;       ④α⊥β,α∩β=m,n⊥m⇒n⊥β.

查看答案和解析>>

同步练习册答案