精英家教网 > 高中数学 > 题目详情
如图所示的四边形ABCD为等腰梯形,两腰与底边的夹角为45°,上底边长为2,高为2.点M从A点出发,沿梯形的边AB,BC运动,最后到达点C,若x表示点M的移动路程,S表示线段DM在四边形ABCD内部扫过的面积.
(1)当S为梯形面积的一半时,求x的值;
(2)求S与x的函数关系式.
考点:根据实际问题选择函数类型
专题:应用题,函数的性质及应用
分析:(1)求出梯形的面积,即可求出S为梯形面积的一半时,x的值;
(2)分类讨论,即可求出S与x的函数关系式.
解答: 解:(1)∵四边形ABCD为等腰梯形,两腰与底边的夹角为45°,上底边长为2,高为2,
∴下底边长为6,
∴梯形面积为
(2+6)×2
2
=8,
∵S为梯形面积的一半,
1
2
×AM×2=4,
∴AM=4,即x=4;
(2)当0<x≤6时,S=
1
2
•x•2
=x;
当6<x≤6+2
2
时,S=8-
1
2
×2×
(6+2
2
-x)=6+2
2
-x.
点评:本题考查根据实际问题选择函数类型,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=2cosx•(cosx-
3
sinx).
(1)若函数g(x)=f(x-
π
6
),求函数g(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=4x2+8x-3.
(1)指出函数y=f(x)图象的开口方向、对称轴方程、顶点坐标;
(2)求y=f(x)的最小值;
(3)写出函数y=f(x)的单调区间.
(4)当x∈[0,2]时,求函数y=f(x)的最大植和最小植.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市举办歌唱比赛,邀请了A、B、C、D四位资深音乐人担任评委,按照节目程序,每一位选手取得决赛资格后可通过抽签的方式选择一位评委作为导师,且他们对导师的选择是相互独立的,某组共有甲、乙、丙、丁四位选手取得了决赛资格,获得了选择导师的机会.
(Ⅰ)求甲、乙、丙三人都选择A为导师的概率;
(Ⅱ)求四位选手至少有一人选择B作为导师的概率;
(Ⅲ)设四位选手选择C为导师的人数ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:|x2-6|≥6,q:x∈z,且“p∧q”与“?q”同时为假命题,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知log189=a,18b=5,试用a、b表示log1845的值;
(Ⅱ)已知log147=a,log145=b,用a、b表示log3528.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(1)x2-(a+1)x+a<0(其中a≠1);
(2)
2
x-1
>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程为(x-1)2+(y-1)2=4,设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,则四边形PAMB面积的最小值为
 

查看答案和解析>>

同步练习册答案