分析 (1)利用互化公式即可得出普通方程.
(2)设x=2+cosθ,y=2+sinθ.利用三角函数换元、二次函数的单调性即可得出.
解答 解 (1)由ρ2-4$\sqrt{2}$ρcos+7=0可得ρ2-4ρcosθ-4ρsinθ+7=0,化为直角坐标方程得x2+y2-4x-4y+7=0,
即(x-2)2+(y-2)2=1,它表示以(2,2)为圆心,以1为半径的圆.
(2)由题意可设x=2+cosθ,y=2+sinθ.
则t=(x+1)(y+1)=(3+cosθ)(3+sinθ)=9+3(sinθ+cosθ)+sinθcos.
令sinθ+cosθ=m,平方可得1+2sinθcosθ=m2,
所以sinθcosθ=$\frac{{m}^{2}-1}{2}$,t=9+3m+$\frac{{m}^{2}-1}{2}$=$\frac{1}{2}$m2+3m+$\frac{17}{2}$(-$\sqrt{2}$≤m≤$\sqrt{2}$).
由二次函数的图象可知t的取值范围为$[\frac{19}{2}-3\sqrt{2},\frac{19}{2}+3\sqrt{2}]$
点评 本题考查了极坐标与直角坐标方程互化公式、三角函数换元、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20π | B. | 42π | C. | 52π | D. | 56π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com