分析 由正弦定理化简已知等式可得sinAsinBcosC+sinCsinBcosA=$\frac{1}{2}$sinB,又sinB≠0,解得sinB的值.
解答 解:在△ABC中,∵asinBcosC+csinBcosA=$\frac{1}{2}$b,
∴由正弦定理可得:sinAsinBcosC+sinCsinBcosA=$\frac{1}{2}$sinB,
又∵sinB≠0,
∴sinAcosC+sinCcosA=$\frac{1}{2}$,解得:sin(A+C)=sinB=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题主要考查了正弦定理,两角和的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2个 | B. | 4个 | C. | 6个 | D. | 8个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆C | C. | A∩B=C | D. | B∪C=A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com