精英家教网 > 高中数学 > 题目详情
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5,
(Ⅰ)求抛物线G的方程;
( Ⅱ)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A,C,D,B四点,试证明|AC|·
|BD|为定值;
(Ⅲ)过A,B分别作抛物线G的切线l1,l2,且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
解:(Ⅰ)由题知,抛物线的准线方程为y+l=0,=1,
所以抛物线G的方程为x2=4y。
(Ⅱ)设直线AB方程y=kx+1交抛物线C于点A(x1,y1),B(x2,y2),
由抛物线定义知|AF|=y1+1,|BF|=y2+l, 
所以,|AC|=y1,|BD|=y2
,得
显然△>0,则
所以,,所以|AC|·|BD|为定值1。
(Ⅲ)由得,
直线AM的方程为,①
直线BM的方程为,②
由②-①,得
所以,∴y=-1,
所以点M的坐标为(2k,-1),
点M到直线AB的距离
弦AB长为
△ACM与△BDM面积之和

当k=0时,AB方程为y=1时,△ACM与△BDM面积之和最小值为2。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分15分)

        已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5。

   (I)求抛物线G的方程;

   (II)如图,过抛物线G的焦点的直线依次与抛物线G及圆交于A、C、D、B四点,试证明为定值;

 
   (III)过A、B分别作抛物G的切线交于点M,试求面积之和的最小值。

查看答案和解析>>

科目:高中数学 来源:2010年高考数学猜题精粹(文科)(解析版) 题型:解答题

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学最有可能考的50题(解析版) 题型:解答题

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年福建省厦门市高三3月质量检查数学试卷(理科)(解析版) 题型:解答题

已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

同步练习册答案