精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)设,若不等式对于任意的x都成立,求实数b的取值范围;

2)设,解关于x的不等式组

【答案】1

2)当,不等式组的解集为,

,不等式组的解集为.

【解析】

(1)由当,恒成立,恒成立,

,可得,再求解即可;

(2),,的图象的对称轴为,再分三种情况讨论即可得解.

解:(1),恒成立,恒成立,

因为,

所以,解之得,

所以实数 的取值范

(2),,的图象的对称轴为

(),,,,

(),

①当,,,所以,

②当,,,所以,

(),,方程的两个根为,,

①当,,所以的解为,

②当,,所以的解为,

综上所述:

,不等式组的解集为,

,不等式组的解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是无穷等比数列,若的每一项都等于它后面所有项的倍,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的准线与轴交于点,过点作直线交抛物线于两点.

1)求直线的斜率的取值范围;

2)若线段的垂直平分线交轴于,求证:

3)若直线的斜率依次为,线段的垂直平分线与轴的交点依次为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(2,0),B(0,2),,O为坐标原点.

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的椭圆的标准方程.

(1)焦点在坐标轴上,且经过点A (,-2),B(-2,1)

(2)与椭圆有相同焦点且经过点M(,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2 没有击中,用3,4,5,6,7,8,9 表示击中,以 4个随机数为一组, 代表射击4次的结果,经随机模拟产生了20组随机数:

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:

①函数的图象关于点对称;②函数的图象关于直线对称;③函数上是减函数;④函数上的值域为.

其中正确结论的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年的流感来得要比往年更猛烈一些据四川电视台“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年16月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:

日期

120

220

320

420

520

620

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的极大值;

(2)当时,不等式恒成立,求的最小值;

(3)是否存在实数,使得方程上有唯一的根,若存在,求出所有的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案