精英家教网 > 高中数学 > 题目详情
19.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f($\frac{1}{x}$)-f(x)>0的解集为(  )
A.(0,1)B.(1,2)C.(1,+∞)D.(2,+∞)

分析 令辅助函数F(x)=$\frac{f(x)}{x}$,求其导函数,据导函数的符号与函数单调性的关系判断出F(x)的单调性,利用单调性判断出由不等式 $\frac{f(\frac{1}{x})}{\frac{1}{x}}$>$\frac{f(x)}{x}$的关系,利用不等式的性质得到结论.

解答 解:令F(x)=$\frac{f(x)}{x}$,(x>0),
则F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)为定义域上的减函数,
由不等式x2f($\frac{1}{x}$)-f(x)>0,
得:$\frac{f(\frac{1}{x})}{\frac{1}{x}}$>$\frac{f(x)}{x}$,
∴$\frac{1}{x}$<x,∴x>1,
故选:C.

点评 本题考查了导数的运算,考查了利用导数研究函数单调性,函数的导函数符号确定函数的单调性:当导函数大于0时,函数单调递增;导函数小于0时,函数单调递减.此题为中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,则输出的i值为(  )
A.55B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\frac{xcosx}{(2x+1)(x-a)}$为奇函数,则a=(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,BC=4,EF=2,四边形EFCB是高为$\sqrt{3}$的等腰梯形,EF∥BC,O为EF的中点.
(1)求证:AO⊥CF;
(2)求二面角F-AE-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知在四棱锥S-ABCD中,底面ABCD是边长为2的棱形,∠ABC=60°,侧面SAD为正三角形,侧面SAD⊥底面ABCD,E为线段AD的中点.
(Ⅰ)求证:SE⊥底面ABCD;
(Ⅱ)求证:二面角A-SB-C为直二面角;
(Ⅲ)在侧棱SB上是否存在一点M,使得BD⊥平面MAC?如果存在,求$\frac{BM}{BS}$的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{2a{x}^{2}+bx+1}{{e}^{x}}$(e为自然对数的底数).
(1)若a=$\frac{1}{2}$,求函数f(x)的单调区间;
(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面几种推理中是演绎推理的是(  )
A.因为y=2x是指数函数,所以函数y=2x经过定点(0,1)
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N*
C.由“平面内垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,高为3的直三棱柱ABC-A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上,$\overrightarrow{CF}•\overrightarrow{D{B}_{1}}$=0,且A1F=1.
(1)求证:CF⊥平面B1DF;
(2)求平面B1FC与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a为实常数,对任意x∈[0,+∞),不等式(x+1)ln(x+1)≥ax恒成立,则a的取值范围是(  )
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案