分析 设等比数列{an}的公比为q>0,由a1+a2+a3=1,a7+a8+a9=4,可得${a}_{1}(1+q+{q}^{2})$=1,${a}_{1}{q}^{6}(1+q+{q}^{2})$=4,可得q3=2,$\frac{{a}_{1}}{1-q}$=1-q3.再利用等比数列的求和公式即可得出.
解答 解:设等比数列{an}的公比为q>0,
∵a1+a2+a3=1,a7+a8+a9=4,
则${a}_{1}(1+q+{q}^{2})$=1,${a}_{1}{q}^{6}(1+q+{q}^{2})$=4,
∴q6=4,
∴q3=2.
∴${a}_{1}(1+q+{q}^{2})$(1-q)=1-q,可得$\frac{{a}_{1}}{1-q}$=1-q3=-1.
∴数列{an}的前15项的和=$\frac{{a}_{1}(1-{q}^{15})}{1-q}$=q15-1=25-1=31.
故答案为:31.
点评 本题考查了等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (-∞,-3] | C. | [-3,1] | D. | (-∞,-3]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 1 | C. | 2 | D. | -2或1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com