19£®ÒÔÖ±½Ç×ø±êϵxOyµÄÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇÒÁ½×ø±êϵÏàͬµÄ³¤¶Èµ¥Î»£®ÒÑÖªµãNµÄ¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬MÊÇÇúÏßC1£º¦Ñ=1ÉÏÈÎÒâÒ»µã£¬µãGÂú×ã$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$£¬ÉèµãGµÄ¹ì¼£ÎªÇúÏßC2£®
£¨1£©ÇóÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Èô¹ýµãP£¨2£¬0£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}$£¨tΪ²ÎÊý£©£¬ÇÒÖ±ÏßlÓëÇúÏßC2½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|PA|}$+$\frac{1}{|PB|}$µÄÖµ£®

·ÖÎö £¨¢ñ£©ÓɦÑ=1£¬µÃx2+y2=1£¬¿ÉµÃÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=1£®ÉèG£¨x£¬y£©£¬M£¨x0£¬y0£©£¬ÀûÓÃÏòÁ¿×ø±êÔËËã¿ÉµÃµãMµÄ×ø±êÓõãGµÄ×ø±ê±íʾ£¬´úÈëÇúÏßC1µÄ·½³Ì¼´¿ÉµÃ³ö·½³Ì£®
£¨¢ò£© °ÑÖ±Ïßl$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©µÄ·½³Ì´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃ£º${t^2}-£¨{1+\sqrt{3}}£©t+1=0$£®ÀûÓÃÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©ÓɦÑ=1£¬µÃx2+y2=1£¬¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=1£¬
¡ßµãNµÄÖ±½Ç×ø±êΪ£¨1£¬1£©£¬ÉèG£¨x£¬y£©£¬M£¨x0£¬y0£©£¬ÓÖ$\overrightarrow{OG}=\overrightarrow{OM}+\overrightarrow{ON}$£¬¼´£¨x£¬y£©=£¨x0£¬y0£©+£¨1£¬1£©£¬
¡à$\left\{\begin{array}{l}{x_0}=x-1\\{y_0}=y-1\end{array}\right.$£¬´úÈë${x_0}^2+{y_0}^2=1$£¬µÃ£¨x-1£©2+£¨y-1£©2=1£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+£¨y-1£©2=1£®
£¨¢ò£© °ÑÖ±Ïßl$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©µÄ·½³Ì´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¨x-1£©2+£¨y-1£©2=1£¬
µÃ${£¨{1-\frac{t}{2}}£©^2}+{£¨{\frac{{\sqrt{3}t}}{2}-1}£©^2}=1$£¬¼´${t^2}-£¨{1+\sqrt{3}}£©t+1=0$£®
ÉèA¡¢BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1¡¢t2£¬Ôò$\left\{\begin{array}{l}{t_1}+{t_2}=1+\sqrt{3}\\{t_1}{t_2}=1\end{array}\right.$£¬Ò×Öªt1£¾0£¬t2£¾0£¬
¡à$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{{|{PA}|+|{PB}|}}{{|{PA}||{PB}|}}=\frac{{|{t_1}|+|{t_2}|}}{{|{{t_1}{t_2}}|}}=\frac{{{t_1}+{t_2}}}{{{t_1}{t_2}}}=1+\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªf£¨x£©=ex-ax2-2x+b£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬a£¬b¡ÊR£©£®
£¨¢ñ£©Éèf¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬Ö¤Ã÷£ºµ±a£¾0ʱ£¬f¡ä£¨x£©µÄ×îСֵСÓÚ0£»
£¨¢ò£©Èôa£¼0£¬f£¨x£©£¾0ºã³ÉÁ¢£¬Çó·ûºÏÌõ¼þµÄ×îСÕûÊýb£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|lnx|£¬¹ØÓÚxµÄ²»µÈʽf£¨x£©-f£¨$\frac{1}{2}$£©¡Ýc£¨x-$\frac{1}{2}$£©µÄ½â¼¯Îª£¨0£¬+¡Þ£©£¬ÔòcµÄÖµÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¼«×ø±êϵÖУ¬PÊÇÇúÏßC1£º¦Ñ=12sin¦ÈÉϵ͝µã£¬QÊÇÇúÏßC2£º¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=-10Éϵ͝µã£®
£¨1£©ÇëÅжÏC1£¬C2·Ö±ðÊÇʲôͼÐΣ»
£¨2£©Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®É趯µãP£¨t£¬0£©£¬Q£¨1£¬t£©£¬ÆäÖвÎÊýt¡Ê[0£¬1]£¬ÔòÏß¶ÎPQɨ¹ýµÄÆ½ÃæÇøÓòµÄÃæ»ýÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÔ²£¨x-a£©2+£¨y-a£©2=8ÉÏ×Ü´æÔÚÁ½¸öµãµ½Ô­µãµÄ¾àÀëΪ$\sqrt{2}$£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬1]B£®£¨-3£¬3£©C£®£¨-3£¬-1]¡È[1£¬3£©D£®£¨-3£¬-1£©¡È£¨1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=£¨x-1£©ex-$\frac{1}{3}$ax3-$\frac{1}{2}$x2+1£¨a¡ÊR£©£®
£¨1£©µ±a=0ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÈôÔÚÇø¼ä[0£¬+¡Þ£©ÉϹØÓÚxµÄ²»µÈʽf£¨x£©¡Ý0ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔڵȱÈÊýÁÐ{an}ÖУ¬¸÷Ïî¶¼ÊÇÕýÊý£¬Èôa1+a2+a3=1£¬a7+a8+a9=4£¬ÔòÊýÁÐ{an}µÄǰ15ÏîµÄºÍΪ31£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇóÖµ£º
£¨1£©2${\;}^{lo{g}_{2}3}$£»£¨2£©4${\;}^{3+lo{g}_{4}5}$£»£¨3£©3${\;}^{2lo{g}_{3}2}$+1£»£¨4£©9${\;}^{lo{g}_{3}2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸