精英家教网 > 高中数学 > 题目详情
4.若圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为$\sqrt{2}$,则实数a的取值范围是(  )
A.[-1,1]B.(-3,3)C.(-3,-1]∪[1,3)D.(-3,-1)∪(1,3)

分析 由已知得圆上点到原点距离d=$\sqrt{2}$,从而|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|,由此能求出实数a的取值范围.

解答 解:圆心(a,a)到原点的距离为$\sqrt{2}$|a|,半径r=2$\sqrt{2}$,
圆上点到原点距离为d,
∵圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为$\sqrt{2}$,
∴d=$\sqrt{2}$,
∴|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|
∴|$\frac{d-r}{\sqrt{2}}$|<|a|<$\frac{d+r}{\sqrt{2}}$,即1<|a|<3,
解得 1<a<3或-3<a<-1.
∴实数a的取值范围是(-3,-1)∪(1,3).
故选:D.

点评 本题考查了实数的取值范围与应用问题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|x-1|+|x-2|.
(1)求函数y=f(x)的最小值;
(2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,设点P(x,3)在矩阵M=$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$对应的变换下得到点Q(y-4,y+2),求M2$[{\begin{array}{l}x\\ y\end{array}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在直角坐标系xOy中,曲线C的参数方程为:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$ (θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的极坐标方程为:2ρcos(θ+$\frac{π}{3}$)+3$\sqrt{6}$=0.
(1)写出曲线C和直线l在直角坐标系下的方程;
(2)设点P是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴建立极坐标系,且两坐标系相同的长度单位.已知点N的极坐标为($\sqrt{2}$,$\frac{π}{4}$),M是曲线C1:ρ=1上任意一点,点G满足$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,设点G的轨迹为曲线C2
(1)求曲线C2的直角坐标方程;
(2)若过点P(2,0)的直线l的参数方程为$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}$(t为参数),且直线l与曲线C2交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$),x∈R.
(1)求f(0)的值;
(2)设α∈[0,$\frac{π}{2}$],β∈[π,$\frac{3π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=-$\frac{6}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=|x-4|+|x-6|的最小值,并求函数值为最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A(-2,4)、B(4,2),直线l过点P(0,-2)与线段AB相交,则直线l的斜率k的取值范围是(  )
A.[1,+∞)B.(-∞,-3]C.[-3,1]D.(-∞,-3]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=-x2-2(m-1)x+5在区间(-∞,-5]上单调递增,则实数m的取值范围是m≤6.

查看答案和解析>>

同步练习册答案