精英家教网 > 高中数学 > 题目详情
16.求函数y=|x-4|+|x-6|的最小值,并求函数值为最小值时x的取值范围.

分析 由条件利用绝对值三角不等式,求得函数y=|x-4|+|x-6|的最小值,以及此时x的取值范围.

解答 解:由于函数y=|x-4|+|x-6|≥|(x-4)-(x-6)|=2,
当且仅当4≤x≤6 时,取等号,
故它的最小值为2,
故函数值为最小值时x的取值范围为[4,6].

点评 本题主要考查绝对值三角不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-2ax+b(a,b∈R),记M是|f(x)|在区间[0,1]上的最大值.
(I)当b=0且M=2时,求a的值;
(Ⅱ)若M≤$\frac{1}{2}$,证明0≤a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,P是曲线C1:ρ=12sinθ上的动点,Q是曲线C2:ρsin(θ+$\frac{π}{4}$)=-10上的动点.
(1)请判断C1,C2分别是什么图形;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为$\sqrt{2}$,则实数a的取值范围是(  )
A.[-1,1]B.(-3,3)C.(-3,-1]∪[1,3)D.(-3,-1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x-1)ex-$\frac{1}{3}$ax3-$\frac{1}{2}$x2+1(a∈R).
(1)当a=0时,求f(x)的单调区间;
(2)若在区间[0,+∞)上关于x的不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{{ln({ax})+2}}$(a≠0).
(1)若a=2,求曲线y=f(x)在点(${\frac{1}{2}$,f(${\frac{1}{2}}$))处的切线方程;
(2)当x∈[2,4]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等比数列{an}中,各项都是正数,若a1+a2+a3=1,a7+a8+a9=4,则数列{an}的前15项的和为31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{lnx+1}{e^x}$,(e=2.71828…是自然对数的底数).
(1)求f(x)的单调区间;
(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=a+lnx,记g(x)=f′(x).
(Ⅰ)已知函数h(x)=f(x)•g(x)在[1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)(ⅰ)求证:当a=1时,f(x)≤x;
(ⅱ)当a=2时,若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案