12£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$ £¨¦ÈΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ£º2¦Ñcos£¨¦È+$\frac{¦Ð}{3}$£©+3$\sqrt{6}$=0£®
£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlÔÚÖ±½Ç×ø±êϵÏµķ½³Ì£»
£¨2£©ÉèµãPÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$ £¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ£º2¦Ñcos£¨¦È+$\frac{¦Ð}{3}$£©+3$\sqrt{6}$=0£¬Õ¹¿ª¿ÉµÃ£º2¦Ñ$£¨\frac{1}{2}cos¦È-\frac{\sqrt{3}}{2}sin¦È£©$+3$\sqrt{6}$=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèP$£¨\sqrt{3}cos¦È£¬sin¦È£©$£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ£ºµãPµ½Ö±ÏßlµÄ¾àÀëd=$\frac{\sqrt{6}|sin£¨¦È-\frac{¦Ð}{4}£©-3|}{2}$£¬ÔÙÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$ £¨¦ÈΪ²ÎÊý£©£¬
¿ÉµÃÆÕͨ·½³Ì£º$\frac{{x}^{2}}{3}$+y2=1£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ£º2¦Ñcos£¨¦È+$\frac{¦Ð}{3}$£©+3$\sqrt{6}$=0£¬
Õ¹¿ª¿ÉµÃ£º2¦Ñ$£¨\frac{1}{2}cos¦È-\frac{\sqrt{3}}{2}sin¦È£©$+3$\sqrt{6}$=0£¬
»¯Îª£ºx-$\sqrt{3}$y+3$\sqrt{6}$=0£®
£¨2£©ÉèP$£¨\sqrt{3}cos¦È£¬sin¦È£©$£¬
µãPµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|\sqrt{3}cos¦È-\sqrt{3}sin¦È+3\sqrt{6}|}{2}$=$\frac{\sqrt{6}|sin£¨¦È-\frac{¦Ð}{4}£©-3|}{2}$¡Ý$\frac{\sqrt{6}¡Á2}{2}$=$\sqrt{6}$£¬
µ±sin$£¨¦È-\frac{¦Ð}{4}£©$=1ʱȡµÈºÅ£®
¡àµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵÊÇ$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Æ½·½¹ØÏµ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Éèa¡ÊR£¬º¯Êýf£¨x£©=ax2-lnx£¬g£¨x£©=ex-ax£®
£¨1£©µ±a=7ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôf£¨x£©•g£¨x£©£¾0¶Ôx¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ò»Î»´´ÒµÇàÄê×âÓÃÁËÒ»¿é±ß³¤Îª1°ÙÃ×µÄÕý·½ÐÎÌïµØABCDÀ´Ñø·ä¡¢²úÃÛÓëÊÛÃÛ£¬ËûÔÚÕý·½ÐεıßBC£¬CDÉÏ·Ö±ðÈ¡µãE£¬F£¨²»ÓëÕý·½ÐεĶ¥µãÖØºÏ£©£¬Á¬½ÓAE£¬EF£¬FA£¬Ê¹µÃ¡ÏEAF=45¡ã£®ÏÖÄ⽫ͼÖÐÒõÓ°²¿·Ö¹æ»®Îª·äÔ´Ö²ÎïÉú³¤Çø£¬¡÷AEF²¿·Ö¹æ»®Îª·ä³²Çø£¬¡÷CEF²¿·Ö¹æ»®Îª·äÃÛ½»Ò×Çø£®Èô·äÔ´Ö²ÎïÉú³¤ÇøµÄͶÈëԼΪ2¡Á105Ôª/°ÙÃ×2£¬·ä³²ÇøÓë·äÃÛ½»Ò×ÇøµÄͶÈëԼΪ105Ôª/°ÙÃ×2£¬ÔòÕâÈý¸öÇøÓòµÄ×ÜͶÈë×îÉÙÐèÒª¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Óмס¢ÒÒÁ½¸ö°à¼¶½øÐÐÊýѧ¿¼ÊÔ£¬°´ÕÕ´óÓÚ»òµÈÓÚ90·ÖΪÓÅÐ㣬90·ÖÒÔÏÂΪ·ÇÓÅÐãͳ¼Æ³É¼¨ºó£¬µÃµ½Èç±íµÄÁÐÁª±í£®
ÓÅÐã·ÇÓÅÐã×ܼÆ
¼×°à10
ÒÒ°à30
ºÏ¼Æ100
ÒÑÖªÔÚÈ«²¿100ÈËÖÐ³éµ½Ëæ»ú³éÈ¡1ÈËΪÓÅÐãµÄ¸ÅÂÊΪ$\frac{3}{10}$£®
£¨1£©ÇëÍê³ÉÈç±íµÄÁÐÁª±í£»
£¨2£©¸ù¾ÝÁÐÁª±íµÄÊý¾Ý£¬Óжà´óµÄ°ÑÎÕÈÏΪ¡°³É¼¨Óë°à¼¶ÓйØÏµ¡°£¿
£¨3£©°´·Ö²ã³éÑùµÄ·½·¨£¬´ÓÓÅÐãѧÉúÖгé³ö6Ãû×é³ÉÒ»¸öÑù±¾£¬ÔÙ´ÓÑù±¾Öгé³ö2ÃûѧÉú£¬ÇóÇ¡ºÃÓÐ1¸öѧÉúÔÚ¼×°àµÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½ºÍÊý¾Ý£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+c£©£¨b+d£©£¨a+b£©£¨c+d£©}$£¬ÆäÖÐn=a+b+c+d£®
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
p£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¼«×ø±êϵÖУ¬PÊÇÇúÏßC1£º¦Ñ=12sin¦ÈÉϵ͝µã£¬QÊÇÇúÏßC2£º¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=-10Éϵ͝µã£®
£¨1£©ÇëÅжÏC1£¬C2·Ö±ðÊÇʲôͼÐΣ»
£¨2£©Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=ex£¬e=2.718¡­£®
£¨¢ñ£©È·¶¨·½³Ìf£¨x£©=$\frac{x+1}{x-1}$µÄʵ¸ù¸öÊý£»
£¨¢ò£©ÎÒÃǰÑÓëÁ½ÌõÇúÏß¶¼ÏàÇеÄÖ±Ïß½Ð×öÕâÁ½ÌõÇúÏߵĹ«ÇÐÏߣ®ÎÊ£ºÇúÏßf£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¹«ÇÐÏߣ¿Èô´æÔÚ£¬È·¶¨¹«ÇÐÏßµÄÌõÊý£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÔ²£¨x-a£©2+£¨y-a£©2=8ÉÏ×Ü´æÔÚÁ½¸öµãµ½Ô­µãµÄ¾àÀëΪ$\sqrt{2}$£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬1]B£®£¨-3£¬3£©C£®£¨-3£¬-1]¡È[1£¬3£©D£®£¨-3£¬-1£©¡È£¨1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x}{{ln£¨{ax}£©+2}}$£¨a¡Ù0£©£®
£¨1£©Èôa=2£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨${\frac{1}{2}$£¬f£¨${\frac{1}{2}}$£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©µ±x¡Ê[2£¬4]ʱ£¬Çóf£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªµÈ±ÈÊýÁеĸ÷ÏΪÕýÊý£¬ÇÒµ±n¡Ý3ʱ£¬a4a2n-4=102n£¬ÔòÊýÁÐlga1£¬2lga2£¬22lga3£¬23lga4£¬¡­£¬2n-1lgan£¬¡­µÄǰnÏîºÍSnµÈÓÚ£¨¡¡¡¡£©
A£®n•2nB£®£¨n-1£©•2n-1-1C£®£¨n-1£©•2n+1D£®2n+1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸