已知直线a、b、c,平面α∩平面β=a,b
α,c
β,且b与c无公共点,则b与c不平行的充要条件是
A.b、c都与α相交
B.b、c中只有一条与α相交
C.b、c中至多一条与α相交
D.b、c中至少有一条与α相交
|
解法一:若直线b与c不平行,又由b与c无公共点,则b与c必定异面,根据异面直线的定义和线面位置关系可知或者b与c都与a相交,或者b、c中有一条与a相交,另一条与a平行,即b、c中至少有一条与α相交,即D成立;反之,当D成立时,不难证明b与c必不平行,所以应选D. 解法二:由题设及异面直线的定义可知,若b、c都与a相交能推出b与c异面,即b与c不平行;反过来,b与c不平行不一定推出b、c都与a相交,即A是充分非必要条件,而不是充要条件,同理,B也是充分非必要条件,而非充要条件,又由b、c中至多有一条与a相交,包含b、c中有一条与a相交和b、c都不与a相交两种情形,而对于后者,即b∥a且c∥a,则b∥c.故c既非充分又非必要条件,综上所述,排除A、B、C三个选择项,从而选择D. |
|
本题考查直线与直线的位置关系,直线与平面的位置关系,充要条件,以及空间想象能力和等价转化能力. |
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com