分析 利用二倍角,诱导公式化简,转化为二次函数即可求y的取值范围.
解答 解:函数y=cos2x+2cos(x+$\frac{π}{2}$)=1-2sin2x-2sinx=1-2(sin2x+sinx+$\frac{1}{4}$)+$\frac{1}{2}$=$\frac{3}{2}$-2(sinx+$\frac{1}{2}$)2.
当sinx=$-\frac{1}{2}$时,y可取得最大值为$\frac{3}{2}$.
当sinx=1时,y可取得最小值为sinx=$\frac{3}{2}-2×\frac{9}{4}$=-3.
则y的取值范围是[-3,$\frac{3}{2}$].
故答案为:[-3,$\frac{3}{2}$].
点评 本题考查了函数值域的问题,利用了二倍角,诱导公式化简,二次函数的性质的运用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{25}$ | B. | $-\frac{24}{25}$ | C. | $-\frac{12}{25}$ | D. | $-\frac{6}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{3}$ | B. | -1 | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com