精英家教网 > 高中数学 > 题目详情
15.已知$sin\frac{a}{2}=\frac{4}{5},cos\frac{a}{2}=-\frac{3}{5}$,则sina等于(  )
A.$\frac{6}{25}$B.$-\frac{24}{25}$C.$-\frac{12}{25}$D.$-\frac{6}{25}$

分析 根据二倍角公式求解即可.

解答 解:∵$sin\frac{a}{2}=\frac{4}{5},cos\frac{a}{2}=-\frac{3}{5}$,
则sina=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{4}{5}×(-\frac{3}{5})$=$-\frac{24}{25}$.
故选:B.

点评 本题考查了二倍角公式的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若定义在[-2017,2017]上的函数f(x)满足:对任意x1∈[-2017,2017],x2∈[-2017,2017]都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时有f(x)>2016,f(x)的最大值、最小值分别为M、N,则M+N=(  )
A.2016B.2017C.4034D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,那么n=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=1,当n≥2时,其前n项和为Sn满足Sn2=an(Sn-1),设bn=log2$\frac{S_n}{{{S_{n+2}}}}$,数列{bn}的前n项和为Tn,则满足Tn≥6的最小正整数n是(  )
A.10B.11C.12D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R),
(1)判断并证明函数的单调性;  
(2)是否存在实数a,使函数f(x)为奇函数.证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数y=cos2x+2cos(x+$\frac{π}{2}$),则y的取值范围是[-3,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(3,6),$\overrightarrow{b}$=(x,8)共线,则实数x等于(  )
A.3B.16C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(cosωx,-cosωx),$\overrightarrow{b}$=($\sqrt{3}$sinωx,cosωx),其中ω<0为常数,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若函数f(x)的最小正周期为π.
(1)求ω的值;
(2)若当x∈[0,$\frac{π}{2}$]时,不等式|k+f(x)|<4恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案