| A. | 10 | B. | 11 | C. | 12 | D. | 9 |
分析 在数列{an}中,a1=1,当n≥2时,其前n项和为Sn满足Sn2=an(Sn-1),即Sn2=(Sn-Sn-1)(Sn-1),化为:$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=1.利用等差数列的通项公式可得:Sn=$\frac{1}{n}$.可得bn=log2$\frac{S_n}{{{S_{n+2}}}}$=$lo{g}_{2}\frac{n+2}{n}$,利用对数的运算性质可得:数列{bn}的前n项和为Tn=$lo{g}_{2}\frac{(n+1)(n+2)}{2}$.由$lo{g}_{2}\frac{(n+1)(n+2)}{2}$≥6,解得(n+1)(n+2)≥27,解得n.
解答 解:在数列{an}中,a1=1,当n≥2时,其前n项和为Sn满足Sn2=an(Sn-1),
∴Sn2=(Sn-Sn-1)(Sn-1),化为:$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=1.
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为1,公差为1.
∴$\frac{1}{{S}_{n}}$=1+(n-1)=n,解得:Sn=$\frac{1}{n}$.
∴bn=log2$\frac{S_n}{{{S_{n+2}}}}$=$lo{g}_{2}\frac{n+2}{n}$,
数列{bn}的前n项和为Tn=$lo{g}_{2}\frac{3}{1}$+$lo{g}_{2}\frac{4}{2}$+$lo{g}_{2}\frac{5}{3}$+…+$lo{g}_{2}\frac{n+1}{n-1}$+$lo{g}_{2}\frac{n+2}{n}$
=$lo{g}_{2}(\frac{3}{1}×\frac{4}{2}×\frac{5}{3}×…×\frac{n+1}{n-1}×\frac{n+2}{n})$
=$lo{g}_{2}\frac{(n+1)(n+2)}{2}$.
由Tn≥6,即$lo{g}_{2}\frac{(n+1)(n+2)}{2}$≥6,解得(n+1)(n+2)≥27,
令f(x)=x2+3x-126
=$(x+\frac{3}{2})^{2}$-128-$\frac{1}{4}$,
可得:f(x)在[1,+∞)上单调递增.
而f(9)=-19<0,f(10)=4>0,
若x∈N*,则n≥10.
则满足Tn≥6的最小正整数n是10.
故选:A.
点评 本题考查了对数的运算性质、等差数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\sqrt{3}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | -10 | C. | -14 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{25}$ | B. | $-\frac{24}{25}$ | C. | $-\frac{12}{25}$ | D. | $-\frac{6}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{5}$ | B. | $\frac{2π}{5}$ | C. | $\frac{4π}{5}$ | D. | $\frac{6π}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com