精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax7+bx+$\frac{c}{x}$-2,若f(2006)=10,则f(-2006)的值为(  )
A.10B.-10C.-14D.无法确定

分析 由已知得f(2016)=a×20167+b×2016+$\frac{c}{2016}$-2=10,从而a×20167+b×2016+$\frac{c}{2016}$=12,由此能求出f(-2016).

解答 解:∵函数f(x)=ax7+bx+$\frac{c}{x}$-2,f(2006)=10,
∴f(2016)=a×20167+b×2016+$\frac{c}{2016}$-2=10,
∴a×20167+b×2016+$\frac{c}{2016}$=12,
∴f(-2016)=$a×(-2016)^{7}+b×(-2016)+\frac{c}{-2016}$-2
=-(a×20167+b×2016+$\frac{c}{2016}$)-2
=-12-2=-14.
故选:C.

点评 本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在四棱柱ABCD-A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:A1O∥平面AB1C
(2)求直线B1C与平面C1CDD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线f(x)=ax3+ln(-2x)存在垂直于y轴的切线,则实数a取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,则sin2α的值为(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=1,当n≥2时,其前n项和为Sn满足Sn2=an(Sn-1),设bn=log2$\frac{S_n}{{{S_{n+2}}}}$,数列{bn}的前n项和为Tn,则满足Tn≥6的最小正整数n是(  )
A.10B.11C.12D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.5个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头
(2)甲不排头,也不排尾
(3)甲、乙、丙三人必须在一起
(4)甲、乙、丙三人两两不相邻
(5)甲在乙的左边(不一定相邻)
(6)甲不排头,乙不排当中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知${(1-2x)^{2017}}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{2017}}{({x-1})^{2017}}$,则a1-2a2+3a3-4a4+…2016a2016+2017a2017(  )
A.2017B.4034C.-4034D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,O为对角线AC与BD的交点,则$\overrightarrow{BC}$-$\overrightarrow{AB}$=(  )
A.2$\overrightarrow{OA}$B.2$\overrightarrow{OB}$C.2$\overrightarrow{OC}$D.2$\overrightarrow{OD}$

查看答案和解析>>

同步练习册答案