精英家教网 > 高中数学 > 题目详情
18.在平行四边形ABCD中,O为对角线AC与BD的交点,则$\overrightarrow{BC}$-$\overrightarrow{AB}$=(  )
A.2$\overrightarrow{OA}$B.2$\overrightarrow{OB}$C.2$\overrightarrow{OC}$D.2$\overrightarrow{OD}$

分析 利用向量的平行四边形法则,化简求解即可.

解答 解:在平行四边形ABCD中,因为$\overrightarrow{BC}$=$\overrightarrow{AD}$,O为BD的中点,则
$\overrightarrow{BC}$-$\overrightarrow{AB}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=$\overrightarrow{BD}$=2$\overrightarrow{OD}$,
故选:D.

点评 本题考查向量的平行四边形法则的应用,平面向量的基本定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax7+bx+$\frac{c}{x}$-2,若f(2006)=10,则f(-2006)的值为(  )
A.10B.-10C.-14D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$,$\overrightarrow{b}$是共线向量且方向相反
C.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相同D.$\overrightarrow{a}$,$\overrightarrow{b}$无论什么关系均可

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某三棱锥的三视图如图所示,该三棱锥体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间(0,2π)范围内,与-$\frac{34π}{5}$终边相同的角是(  )
A.$\frac{π}{5}$B.$\frac{2π}{5}$C.$\frac{4π}{5}$D.$\frac{6π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2|cos x|+cos x-$\frac{2}{3}$在区间[0,2π]内的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一支田径队员有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足2$\overrightarrow{a}$+$\overrightarrow{b}$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow{b}$•$\overrightarrow{c}$=-18,则$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数a,b满足($\frac{1}{2}$)a<($\frac{1}{2}$)b,则(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}{b}$D.sina>sinb

查看答案和解析>>

同步练习册答案