精英家教网 > 高中数学 > 题目详情
8.已知实数a,b满足($\frac{1}{2}$)a<($\frac{1}{2}$)b,则(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}{b}$D.sina>sinb

分析 根据指数函数的性质求出a>b,根据指数函数以及对数函数的性质判断即可.

解答 解:若($\frac{1}{2}$)a<($\frac{1}{2}$)b
则a>b,故${a}^{\frac{1}{3}}$>${b}^{\frac{1}{3}}$,
故选:A.

点评 本题考查了指数函数以及对数函数的性质,考查不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,O为对角线AC与BD的交点,则$\overrightarrow{BC}$-$\overrightarrow{AB}$=(  )
A.2$\overrightarrow{OA}$B.2$\overrightarrow{OB}$C.2$\overrightarrow{OC}$D.2$\overrightarrow{OD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=sinxcosx的图象向左平移$\frac{π}{4}$个单位,再向上平移$\frac{1}{2}$个单位,所得图象的函数解析式是(  )
A.y=cos2xB.y=sin2xC.$y=\frac{1}{2}sin(2x+\frac{π}{4})+\frac{1}{2}$D.$y=\frac{1}{2}cos2x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在60°角的二面角的棱上有两个点A、B,AC、BD分别是在这个二面角的两个面内,且都垂直于AB,若AB=5,AC=3,BD=8,则CD=$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数学表达式$\sqrt{x}$在程序中表示为(  )
A.ABS(x)B.SQR(x)C.RND(x)D.INT(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)的导函数为f′(x),当x>0时,2f(x)>xf′(x),且f(1)=1,若存在x∈R+,使f(x)=x2,则x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a为常数,已知函数f(x)=x2-alnx在区间[1,2]上是增函数,$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数.设P为函数g(x)图象上任意一点,则点P到直线l:x-2y-6=0距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,A=120°,则B的大小为45°.

查看答案和解析>>

同步练习册答案