分析 由函数f(x)=x2-alnx在区间[1,2]上是增函数,$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数,可求得a=2,设P(t,t-2$\sqrt{t}$),(t≥0)
则点P到直线l:x-2y-6=0距离为d=$\frac{|t-2(t-2\sqrt{t})-6|}{\sqrt{5}}$=$\frac{|t-4\sqrt{t}+6|}{\sqrt{5}}$=$\frac{(\sqrt{t}-2)^{2}+2}{\sqrt{5}}$$≥\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$即可.
解答 解:$f′(x)=2x-\frac{a}{x},(x>0)$,要使函数f(x)=x2-alnx在区间[1,2]上是增函数,
则f$f′(x)=2x-\frac{a}{x}≥0在[1,2]上恒成立$,a≤(2x2)min=2.
要使$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数,则$g′(x)=1-\frac{a}{2}{x}^{-\frac{1}{2}}≤0在(1,2]$恒成立.
a$≥(2\sqrt{x})_{max}=2$
综上,a=2
故g(x)=x-2$\sqrt{x}$,设P(t,t-2$\sqrt{t}$),(t≥0)
则点P到直线l:x-2y-6=0距离为d=$\frac{|t-2(t-2\sqrt{t})-6|}{\sqrt{5}}$=$\frac{|t-4\sqrt{t}+6|}{\sqrt{5}}$=$\frac{(\sqrt{t}-2)^{2}+2}{\sqrt{5}}$$≥\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$
故答案为:$\frac{2\sqrt{5}}{5}$
点评 本题考查了函数的单调性,点到直线距离的最值,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$ | B. | log2a>log2b | C. | $\frac{1}{a}$<$\frac{1}{b}$ | D. | sina>sinb |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$ | |
| B. | 方向相同或相反的非零向量叫做共线向量 | |
| C. | 若$\overrightarrow a\;∥\;\overrightarrow b$,$\overrightarrow b\;∥\;\overrightarrow c$,则$\overrightarrow a\;∥\;\overrightarrow c$不一定成立 | |
| D. | 若$\overrightarrow{AB}=\overrightarrow{DC}$,则A,B,C,D四点构成一个平行四边形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com