精英家教网 > 高中数学 > 题目详情
19.设命题P:?x>0,x2≤1,则¬P为(  )
A.?x>0,x2<1B.?x>0,x2>1C.?x>0,x2>1D.?x>≤0,x2≤1

分析 由?x∈A,M成立,其否定为:?x∈A,¬M成立.对照选项即可得到结论.

解答 解:由?x∈A,M成立,
其否定为:?x∈A,¬M成立.
命题P:?x>0,x2≤1,
可得¬P为?x>0,x2>1,
故选:C.

点评 本题考查命题的否定,注意区别命题的否命题,考查转化思想的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将函数y=sinxcosx的图象向左平移$\frac{π}{4}$个单位,再向上平移$\frac{1}{2}$个单位,所得图象的函数解析式是(  )
A.y=cos2xB.y=sin2xC.$y=\frac{1}{2}sin(2x+\frac{π}{4})+\frac{1}{2}$D.$y=\frac{1}{2}cos2x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a为常数,已知函数f(x)=x2-alnx在区间[1,2]上是增函数,$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数.设P为函数g(x)图象上任意一点,则点P到直线l:x-2y-6=0距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,…,一直数到2017时,对应的指头是大拇指.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知θ∈(0,2π),且sinθ<tanθ<cotθ,那么θ的取值范围是(  )
A.$({\frac{π}{4},\frac{π}{2}})$B.$({π,\frac{5π}{4}})$C.$({\frac{5π}{4},\frac{3π}{2}})$D.$({\frac{π}{2},\frac{3π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设p:x2-8x-9≤0,q:x2-2x+1-m2≤0(m>0),且非p是非q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,A=120°,则B的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P(x0,y0)是$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})$图象上任一点,y=f(x)图象在P点处的切线的斜率不可能是(  )
A.0B.2C.3D.4

查看答案和解析>>

同步练习册答案