精英家教网 > 高中数学 > 题目详情
14.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,…,一直数到2017时,对应的指头是大拇指.

分析 大拇指对应的数为8n+1,小值对应的数为8n+5,2017÷8=252余1,由此能求出结果.

解答 解:大拇指对应的数为8n+1,小值对应的数为8n+5,
又因为2017÷8=252余1,
故一直数到2017时,对应的指头是:大拇指,
故答案为:大拇指

点评 本题考查等差数列的通项公式的应用,解题时要认真观察,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14. 如图,在正四棱柱ABCD-A1B1C1D1中,AA1=6,AB=2,M,N分别是棱B1B,BC的中点.
(1)用向量方法证明:A1M∥平面D1AN;
(2)求A1D1与平面D1AN所成角的正弦值;
(3)在平面AA1B1B内是否存在一点P,使得PD⊥平面D1AN?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足3x2+2y2=6x,则x2+y2的最大值是(  )
A.$\frac{9}{2}$B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.O是△ABC所在平面上的一点.内角A.B.C所对的边分别是3、4、5,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$.若点P在△ABC的边上.则$\overrightarrow{OA}$•$\overrightarrow{OP}$的取值范围为[-5,10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和 15次试验,并且利用最小二乘法,求得回归方程所对应的直线分别为l1:y=0.7x-0.5和l2:y=0.8x-1,则这两个人在试验中发现对变量x的观测数据的平均值S与对变量y的观测数据的平均值t的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题P:?x>0,x2≤1,则¬P为(  )
A.?x>0,x2<1B.?x>0,x2>1C.?x>0,x2>1D.?x>≤0,x2≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cos({-π-α})}}$
(1)求f(-$\frac{31π}{3}$)
(2)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α
(3)若f(α)=$\frac{3}{5}$,求sinα,cosα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对具有线性相关关系的变量x,y,测得一组数据如下:
x24568
y2040607080
根据以上数据,利用最小二乘法得它们的回归直线方程为$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,据此模型来预测当x=20时,y的估计值为211.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a=(\sqrt{3}sinωx,cosωx),\overrightarrow b=(cosωx,-cosωx),(ω>0)$,函数f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$的图象的两相邻对称轴间的距离为$\frac{π}{4}$.
(1)求ω的值;
(2)若$x∈(\frac{7π}{24},\frac{5π}{12})$,f(x)=-$\frac{3}{5}$,求cos4x的值;
(3)是否存在实数a使得af(x)+1≥0在$x∈[0,\frac{π}{4}]$上恒成立?若存在请求出a的取值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案