精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足3x2+2y2=6x,则x2+y2的最大值是(  )
A.$\frac{9}{2}$B.4C.5D.2

分析 化二元为一元,注意确定变量的范围,转化为二次函数的最值,利用配方法可求结论.

解答 解:∵3x2+2y2=6x,∴y2=-$\frac{3}{2}$x2+3x,
由y2=-$\frac{3}{2}$x2+3x≥0,
可得0≤x≤2,
又x2+y2=x2-$\frac{3}{2}$x2+3x=-$\frac{1}{2}$x2+3x=-$\frac{1}{2}$(x-3)2+$\frac{9}{2}$,
∵0≤x≤2,
∴x=2时,x2+y2的最大值为4.
故选:B.

点评 本题考查最值问题,考查学生转化问题的能力,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(cosωx,-cosωx),$\overrightarrow{b}$=($\sqrt{3}$sinωx,cosωx),其中ω<0为常数,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若函数f(x)的最小正周期为π.
(1)求ω的值;
(2)若当x∈[0,$\frac{π}{2}$]时,不等式|k+f(x)|<4恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=$\frac{a}{3}$,则MN与平面BB1C1C的位置关系为(  )
A.相交B.平行C.垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数学表达式$\sqrt{x}$在程序中表示为(  )
A.ABS(x)B.SQR(x)C.RND(x)D.INT(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,等腰三角形ABC中,E为底边BC的中点,△AEC沿AE折叠,将点C折到点P的位置,使二面角P-AE-B为60°,设点P在平面ABE上的射影为H.
(Ⅰ)证明:点H为EB的中点;
(Ⅱ)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直线BE与平面ABP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a为常数,已知函数f(x)=x2-alnx在区间[1,2]上是增函数,$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数.设P为函数g(x)图象上任意一点,则点P到直线l:x-2y-6=0距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知矩阵M对应的变换将点(-5,-7)变换为(2,1),其逆矩阵M-1有特征值-1,对应的一个特征向量为$[{\begin{array}{l}1\\ 1\end{array}}]$,求矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,…,一直数到2017时,对应的指头是大拇指.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知三角形的顶点分别为A(-1,3),B(3,2),C(1,0)
(1)求BC边上高的长度;
(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程.

查看答案和解析>>

同步练习册答案