分析 根据矩阵的变换求得M$[\begin{array}{l}{-5}\\{-7}\end{array}]$=$[\begin{array}{l}{2}\\{1}\end{array}]$,利用矩阵的特征向量及特征值的关系,利用矩阵的乘法,即可求得M的逆矩阵,即可求得矩阵M.
解答 解:由题意可知:M$[\begin{array}{l}{-5}\\{-7}\end{array}]$=$[\begin{array}{l}{2}\\{1}\end{array}]$,
M-1$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
∴M-1$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-5}\\{-7}\end{array}]$,
设M-1=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,则$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{2}\\{1}\end{array}]$=$[\begin{array}{l}{-5}\\{-7}\end{array}]$,$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
则$\left\{\begin{array}{l}{2a+b=-5}\\{2c+d=-7}\\{a+b=-1}\\{c+d=-1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-4}\\{b=3}\\{c=-6}\\{d=5}\end{array}\right.$,则M-1=$[\begin{array}{l}{-4}&{3}\\{-6}&{5}\end{array}]$,
det(M-1)=-20+18=-2,
则M=$[\begin{array}{l}{-\frac{5}{2}}&{\frac{3}{2}}\\{-3}&{2}\end{array}]$.
∴矩阵M=$[\begin{array}{l}{-\frac{5}{2}}&{\frac{3}{2}}\\{-3}&{2}\end{array}]$.
点评 本题考查矩阵及逆矩阵的求法,矩阵的乘法,矩阵的特征值及特征向量的关系,考查转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d1=2,d2=0,d3=2014 | B. | d1=2,d2=2,d3=2014 | ||
| C. | d1=2,d2=1,d3=2013 | D. | d1=2,d2=2,d3=2012 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com