精英家教网 > 高中数学 > 题目详情
10.如图,等腰三角形ABC中,E为底边BC的中点,△AEC沿AE折叠,将点C折到点P的位置,使二面角P-AE-B为60°,设点P在平面ABE上的射影为H.
(Ⅰ)证明:点H为EB的中点;
(Ⅱ)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直线BE与平面ABP所成角的正弦值.

分析 (Ⅰ)证明AE⊥BC,推出AE⊥EB,AE⊥KP,得到AE⊥面EPB.说明∠PEB为二面角P-AE-B的平面角,说明△PEB为等边三角形,然后证明PH⊥平面ABE,推出EB的中点H为P在平面ABE上的射影.
(Ⅱ)过点H,作HF⊥AB于F,以$\overrightarrow{HF}$方向为x轴,$\overrightarrow{HB}$方向为y轴,$\overrightarrow{HP}$方向为z轴建立空间直角坐标系H-xyz,求出相关点的坐标,平面PAB的法向量,然后求解直线BE与平面ABP所成角的正弦函数值.

解答 (本小题满分12分)
(Ⅰ)依题意,AE⊥BC,则AE⊥EB,AE⊥KP,EB∩EP=E.
∴AE⊥面EPB.
故∠PEB为二面角P-AE-B的平面角,
所以∠PEB=60°,因为PE=BE,所以△PEB为等边三角形,

所以,若H为EB中点,则PH⊥EB,又因为AE⊥面EPB,
所以AE⊥PH,因为AE∩EB=E,且AE,EB?平面ABE,所以PH⊥平面ABE,
所以EB的中点H为P在平面ABE上的射影.

(Ⅱ)过点H,作HF⊥AB于F,因为PH⊥平面ABE,所以PH⊥HB,PH⊥HF,
所以以$\overrightarrow{HF}$方向为x轴,$\overrightarrow{HB}$方向为y轴,$\overrightarrow{HP}$方向为z轴建立空间直角坐标系H-xyz,
由题知,$B({0,1,0}),E({0,-1,0}),P({0,0\sqrt{3}}),A({2,-1,0})$,所以$\overrightarrow{EB}=({0,2,0}),\overrightarrow{PA}=({2,-1,-\sqrt{3}}),\overrightarrow{PB}=({0,1,-\sqrt{3}})$,
设平面PAB的法向量为$\overrightarrow n=({x,y,z})$,所以$\left\{{\begin{array}{l}{2x-y-\sqrt{3}z=0}\\{y-\sqrt{3}z=0}\end{array}}\right.$,
令$z=\sqrt{3}$,则y=3,x=3,所以$\overrightarrow n=({3,3,\sqrt{3}})$,
所以$cos\left?{\overrightarrow n,\overrightarrow{EB}}\right>=\frac{6}{{\sqrt{4}\sqrt{9+9+3}}}=\frac{{\sqrt{21}}}{7}$,
设直线BE与平面ABP所成角为θ,则$sinθ=\frac{{\sqrt{21}}}{7}$.

点评 考查直线与平面垂直,直线与平面所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=sin2(x+$\frac{π}{4}$)的单调递增区间是(  )
A.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)B.(kπ-$\frac{π}{2}$,kπ)((k∈Z)C.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)((k∈Z)D.(kπ,kπ+$\frac{π}{2}$)((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2是椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左、右焦点,直线l经过F2与椭圆C交于A,B,则△ABF1的周长是8,椭圆C的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:方程x2+m2y2=1表示焦点在y轴上的椭圆,命题q:在平面直角坐标系xOy中,圆x2+y2=4上至少有三个点到直线3x-4y+m-5=0的距离为1,若p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的终边经过点P(x,-$\sqrt{2}$)(x>0),且cosα=$\frac{\sqrt{3}}{6}$x,求sinα+$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足3x2+2y2=6x,则x2+y2的最大值是(  )
A.$\frac{9}{2}$B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度为d=(2-1)+(5-3)=3,用[x]表示不超过的x最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]•{x},g(x)=2x-[x]-2,若用d1,d2,d3分别表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的长度,则当0≤x≤2016时,有(  )
A.d1=2,d2=0,d3=2014B.d1=2,d2=2,d3=2014
C.d1=2,d2=1,d3=2013D.d1=2,d2=2,d3=2012

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和 15次试验,并且利用最小二乘法,求得回归方程所对应的直线分别为l1:y=0.7x-0.5和l2:y=0.8x-1,则这两个人在试验中发现对变量x的观测数据的平均值S与对变量y的观测数据的平均值t的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,若正四棱锥P-ABCD的底面边长为2,斜高为$\sqrt{5}$,则该正四棱锥的体积为$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案