精英家教网 > 高中数学 > 题目详情
15.某市A,B,C,D,E,F六个城区欲架设光缆,如图所示,两点之间的线段及线段上的相应数字分别表示对应城区可以架设光缆及所需光缆的长度,如果任意两个城市之间均有光缆相通,则所需光缆的总长度的最小值是(  )
A.12B.13C.14D.15

分析 利用已知图形,判断任意两个城市之间均有光缆相通,所需光缆的总长度的最小值即可.

解答 解:由题意可知:任意两个城市之间均有光缆相通,可以由A→C→B→E→F→D架设光缆,
此时所需光缆的总长度的最小值是:2+3+3+1+3=12.
故选:A.

点评 本题考查合情推理的简单应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.阅读如图所示的程序框图,若输出的数据为58,则判断框中应填入的条件为k≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在60°角的二面角的棱上有两个点A、B,AC、BD分别是在这个二面角的两个面内,且都垂直于AB,若AB=5,AC=3,BD=8,则CD=$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)的导函数为f′(x),当x>0时,2f(x)>xf′(x),且f(1)=1,若存在x∈R+,使f(x)=x2,则x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a为常数,已知函数f(x)=x2-alnx在区间[1,2]上是增函数,$g(x)=x-a\sqrt{x}$在区间[0,1]上是减函数.设P为函数g(x)图象上任意一点,则点P到直线l:x-2y-6=0距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{({b}_{n}+2)}^{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知θ∈(0,2π),且sinθ<tanθ<cotθ,那么θ的取值范围是(  )
A.$({\frac{π}{4},\frac{π}{2}})$B.$({π,\frac{5π}{4}})$C.$({\frac{5π}{4},\frac{3π}{2}})$D.$({\frac{π}{2},\frac{3π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知△ABC,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

同步练习册答案