分析 根据题意,令g(x)=$\frac{f(x)}{{x}^{2}}$,利用导数得到,g(x)在(0,+∞)是减函数,根据f(1)=1,即可求出f(x)=x2的解
解答 解:根据题意,令g(x)=$\frac{f(x)}{{x}^{2}}$,
则g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵当x>0时,2f(x)>xf′(x),
∴g′(x)<0在(0,+∞)上恒成立,
∴g(x)在(0,+∞)上单调递减
∵f(1)=1,
∴g(1)=$\frac{f(1)}{{1}^{2}}$=1,
∵f(x)=x2,
∴g(x)=1=g(1),
∴x=1
故答案为:1
点评 本题考查导数与函数单调性的关系,关键是构造函数g(x)=$\frac{f(x)}{{x}^{2}}$,想到通过构造函数解决.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$ | B. | log2a>log2b | C. | $\frac{1}{a}$<$\frac{1}{b}$ | D. | sina>sinb |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${∫}_{0}^{1}$xdx | B. | ${∫}_{0}^{1}$$\frac{1}{x}$dx | C. | ${∫}_{0}^{1}$$\sqrt{x}$dx | D. | ${∫}_{0}^{1}$x2dx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com