精英家教网 > 高中数学 > 题目详情
17.已知${(1-2x)^{2017}}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{2017}}{({x-1})^{2017}}$,则a1-2a2+3a3-4a4+…2016a2016+2017a2017(  )
A.2017B.4034C.-4034D.0

分析 对式子两边求导,令x=0即可得出答案.

解答 解:令f(x)=(1-2x)2017,则f′(x)=-2×2017(1-2x)2016
∴f′(0)=-4034,
又f(x)=a0+a1(x-1)+a2(x-1)2+…+a2017(x-1)2017
∴f′(x)=a1+2a2(x-1)+3a3(x-1)2+…+2017a2017(x-1)2016
∴f′(0)=a1-2a2+3a3+…+2017a2017=-4034.
故选C.

点评 本题考查了二项式定理的应用、导数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.用数学归纳法证明等式1+3+5+…+(2n+5)=(n+3)2(n∈N*)时,验证n=1,左边应取的项是(  )
A.1B.1+3C.1+3+5D.1+3+5+7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax7+bx+$\frac{c}{x}$-2,若f(2006)=10,则f(-2006)的值为(  )
A.10B.-10C.-14D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,若2$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$共线,则k的值是$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的图象上任意两点(x1,f(x1),(x2,f(x2)),且φ的终边过点(1,-$\sqrt{3}$),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意的x∈[0,$\frac{π}{6}$],不等式mf(x)=2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.三棱锥A-BCD中,E是BC的中点,AB=AD,BD⊥DC
(I)求证:AE⊥BD;
(II)若DB=2DC=$\sqrt{2}$AB=2,且二面角A-BD-C为60°,求AD与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$,$\overrightarrow{b}$是共线向量且方向相反
C.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相同D.$\overrightarrow{a}$,$\overrightarrow{b}$无论什么关系均可

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某三棱锥的三视图如图所示,该三棱锥体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足2$\overrightarrow{a}$+$\overrightarrow{b}$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow{b}$•$\overrightarrow{c}$=-18,则$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

同步练习册答案