精英家教网 > 高中数学 > 题目详情
19.若曲线f(x)=ax3+ln(-2x)存在垂直于y轴的切线,则实数a取值范围是(0,+∞).

分析 先求函数f(x)=ax3+ln(-2x)的导函数f′(x),再将“线f(x)=ax3+ln(-2x)存在垂直于y轴的切线”转化为f′(x)=0有正解问题,最后利用数形结合或分离参数法求出参数a的取值范围.

解答 解:∵f′(x)=3ax2+$\frac{1}{x}$(x<0),
∵曲线f(x)=ax3+ln(-2x)存在垂直于y轴的切线,
∴f′(x)=3ax2+$\frac{1}{x}$=0有负解,
即a=-$\frac{1}{{3x}^{3}}$有负解,
∵-$\frac{1}{{3x}^{3}}$>0,
∴a>0,
故答案为(0,+∞).

点评 本题考察了导数的几何意义,转化化归的思想方法,解决方程根的分布问题的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={ x丨-2<x<1},B={x丨x2-2x≤0},则A∩B等于(  )
A.{ x丨0<x<1}B.{ x丨0≤x<1}C.{ x丨0<x≤1}D.{ x丨-2<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一物体在力F(x)=ex+2x(单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=3处(单位:m),则力F(x)所作的功为(  )
A.e3+9B.e3+8C.e3+2D.e3+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用数学归纳法证明等式1+3+5+…+(2n+5)=(n+3)2(n∈N*)时,验证n=1,左边应取的项是(  )
A.1B.1+3C.1+3+5D.1+3+5+7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设an(n=2,3,4,…)是(3+$\sqrt{x}$)n的展开式中x的一次项的系数,则$\frac{2017}{1008}$($\frac{{3}^{2}}{{a}_{2}}$+$\frac{{3}^{3}}{{a}_{3}}$+…+$\frac{{3}^{2017}}{{a}_{2017}}$)的值是36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?a>0,a+$\frac{1}{a}$≥2,命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,则下列判断正确的是(  )
A.p是假命题B.q是真命题C.p(∧¬q) 是真命题D.(¬p)∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{x}$-kx(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是(0,$\frac{{e}^{2}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ax7+bx+$\frac{c}{x}$-2,若f(2006)=10,则f(-2006)的值为(  )
A.10B.-10C.-14D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$,$\overrightarrow{b}$是共线向量且方向相反
C.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相同D.$\overrightarrow{a}$,$\overrightarrow{b}$无论什么关系均可

查看答案和解析>>

同步练习册答案