精英家教网 > 高中数学 > 题目详情
4.已知命题p:?a>0,a+$\frac{1}{a}$≥2,命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,则下列判断正确的是(  )
A.p是假命题B.q是真命题C.p(∧¬q) 是真命题D.(¬p)∧q是真命题

分析 命题p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$的真假进行判定,再利用复合命题的真假判定

解答 解:对于命题p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,
由均值不等式,显然p为真,故A错
命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,sinx0+cosx0=$\sqrt{2}$sin(x0+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$]
而$\sqrt{3}$∉[-$\sqrt{2}$,$\sqrt{2}$]
所以q是假命题,故B错
∴利用复合命题的真假判定,
p∧(¬q)是真命题,故C正确
(¬p)∧q是假命题,故D错误
故选:C.

点评 本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若$θ∈[{0,\frac{π}{2}}]$,$cos2θ=\frac{7}{25}$,则sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{x}$
(1)利用定义法求函数f(x)=$\frac{1}{x}$的导函数
(2)求曲线f(x)=$\frac{1}{x}$过(2,0)的切线方程
(3)求(2)的切线与曲线$f(x)=\frac{1}{x}$及直线x=2所围成的曲边图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算:${∫}_{1}^{3}$(x-5)dx=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线f(x)=ax3+ln(-2x)存在垂直于y轴的切线,则实数a取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
非体育迷体育迷合计
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,则sin2α的值为(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.5个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头
(2)甲不排头,也不排尾
(3)甲、乙、丙三人必须在一起
(4)甲、乙、丙三人两两不相邻
(5)甲在乙的左边(不一定相邻)
(6)甲不排头,乙不排当中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)过点A(2,2)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

同步练习册答案