精英家教网 > 高中数学 > 题目详情
12.计算:${∫}_{1}^{3}$(x-5)dx=-6.

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{1}^{3}$(x-5)dx=($\frac{1}{2}$x2-5x)|${\;}_{1}^{3}$=($\frac{9}{2}$-15)-($\frac{1}{2}$-5)=-6,
故答案为:-6

点评 本题考查了定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ为参数),直线l经过定点P(3,5),倾斜角为$\frac{π}{6}$.
(Ⅰ) 写出直线l的参数方程和曲线C的标准方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知3sin2α+2sin2β=1,3sin2α-2sin2β=0,且α、β都是锐角,则α+2β的值为(  )
A.$\frac{π}{2}$B.πC.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=(  )
A.15B.11C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用数学归纳法证明等式1+3+5+…+(2n+5)=(n+3)2(n∈N*)时,验证n=1,左边应取的项是(  )
A.1B.1+3C.1+3+5D.1+3+5+7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|\\ 2-lnx\end{array}\right.$$\begin{array}{l}0<x≤e\\ x>e\end{array}$,若正实数a,b,c互不相等,且f(a)=f(b)=f(c),则a•b•c的取值范围为(  )
A.(e,e2B.(1,e2C.$(\frac{1}{e},e)$D.$(\frac{1}{e},{e^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?a>0,a+$\frac{1}{a}$≥2,命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,则下列判断正确的是(  )
A.p是假命题B.q是真命题C.p(∧¬q) 是真命题D.(¬p)∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知四棱锥P-ABCD的三视图和直观图如图:

(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.三棱锥A-BCD中,E是BC的中点,AB=AD,BD⊥DC
(I)求证:AE⊥BD;
(II)若DB=2DC=$\sqrt{2}$AB=2,且二面角A-BD-C为60°,求AD与面BCD所成角的正弦值.

查看答案和解析>>

同步练习册答案