精英家教网 > 高中数学 > 题目详情
10.对于函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R),
(1)判断并证明函数的单调性;  
(2)是否存在实数a,使函数f(x)为奇函数.证明你的结论.

分析 (1)根据函数单调性的定义进行证明即可,
(2)结合函数奇偶性的定义进行证明.

解答 解:(1)函数f(x)为R上的增函数.证明如下:
函数f(x)的定义域为R,对任意x1,x2∈[0,+∞),且x1<x2
则f(x1)-f(x2)=a-$\frac{2}{{2}^{{x}_{1}}+1}$-(a-$\frac{2}{{2}^{{x}_{2}}+1}$)=$\frac{2}{{2}^{{x}_{2}}+1}$-$\frac{2}{{2}^{{x}_{1}}+1}$=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
因为y=2x是R上的增函数,所以${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,即${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,
所以f(x1)-f(x2)<0即f(x1)<f(x2),函数f(x)为R上的增函数.
(2)存在实数a=1,使函数f(x)为奇函数.
证明如下:当a=1时,f(x)=1-$\frac{2}{{2}^{x}+1}$=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
对?x∈R,f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-$\frac{{2}^{x}-1}{{2}^{x}+1}$=-f(x),
即f(x)为奇函数.

点评 本题主要考查函数奇偶性和单调性的判断,利用函数奇偶性和单调性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.过原点O作斜率为k1(k1≠0)的直线l交抛物线Γ:y=$\frac{1}{4}$x2-1于A,B 两点,
(1)当k1=1时,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延长AM交抛物线Γ于C点,延长BM交抛物线Γ于D点.记直线CD的斜率为k2,问是否存在实数λ,都有k2=λk1成立,如果存在,请求出λ的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.请阅读:在等式cos2x=2cos2x-1(x∈R)的两边对x求导,得(-sin2x)•2=4cosx(-sinx),化简后得等式sin2x=2cosxsinx.
利用上述方法,试由等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整数n≥2),
(1)证明:$n[{(1+x)^{n-1}}-1]=\sum_{k=2}^n{kC_n^k{x^{k-1}}}$;(注:$\sum_{i=1}^n{{a_i}={a_1}+{a_2}+…+{a_n}}$)
(2)求$C_{10}^1+2C_{10}^2+3C_{10}^3+…+10C_{10}^{10}$;
(3)求${1^2}C_{10}^1+{2^2}C_{10}^2+{3^2}C_{10}^3+…+{10^2}C_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简下列各式:
(1)sin(3π+α)+tan(α-π)sin($\frac{π}{2}$+α)
(2)$\frac{1-tan15°}{1+tan15°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知各项都为正数的等比数列{an}满足a5=2a4+3a3,存在两项am,an使得$\sqrt{{a_m}•{a_n}}=27{a_1}$,则$\frac{1}{m}+\frac{4}{n}$的最小值为
$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$sin\frac{a}{2}=\frac{4}{5},cos\frac{a}{2}=-\frac{3}{5}$,则sina等于(  )
A.$\frac{6}{25}$B.$-\frac{24}{25}$C.$-\frac{12}{25}$D.$-\frac{6}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值是(  )
A.-$\sqrt{3}$B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.7人站成一排,求满足下列条件的不同站法:
(1)甲、乙两人相邻;
(2)甲、乙之间隔着2人;
(3)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变;
(4)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法;
(5)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=sin2(x+$\frac{π}{4}$)的单调递增区间是(  )
A.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)B.(kπ-$\frac{π}{2}$,kπ)((k∈Z)C.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)((k∈Z)D.(kπ,kπ+$\frac{π}{2}$)((k∈Z)

查看答案和解析>>

同步练习册答案