分析 (1)对二项式定理的展开式两边对x求导数,移项得到恒等式.
(2)在等式(1)中,令x=1,可得,n(2n-1-1)=$\sum_{k=2}^{n}$•k,从而求得要求式子的值.
(3)在(1)中的结论两边同乘x,再两边求导即可得出结论.
解答 解:(1)证明:在等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整数n≥2)中,
两边对x求导,得:n(1+x)n-1=${C}_{n}^{1}$+2${C}_{n}^{2}$x+3${C}_{n}^{3}$•x2+…+n${C}_{n}^{n}$•xn-1,
移项,得:n[(1+x)n-1-1]=$\sum_{k=2}^{n}$k•${C}_{n}^{k}$•xk-1.
(2)由(1)令x=1可得,n(2n-1-1)=$\sum_{k=2}^{n}$k${C}_{n}^{k}$,
令n=10,得C101+2C102+3C103+…+10C1010=10+10(29-1)=5120;
(3)由(1)得n(1+x)n-1=${C}_{n}^{1}$+2${C}_{n}^{2}$x+3${C}_{n}^{3}$•x2+…+n${C}_{n}^{n}$•xn-1,
∴nx(1+x)n-1=${C}_{n}^{1}$x+2${C}_{n}^{2}$x2+3${C}_{n}^{3}$•x3+…+n${C}_{n}^{n}$•xn,
两边求导得n(1+x)n-1+n(n-1)x(1+x)n-2=${C}_{n}^{1}$+22${C}_{n}^{2}$x+32${C}_{n}^{3}$•x2+…+n2${C}_{n}^{n}$•xn-1,
令x=1,n=10,可得:10×29+90×28=${C}_{10}^{1}$+22${C}_{10}^{2}$+32${C}_{10}^{3}$•+…+n2${C}_{10}^{10}$.
∴12${C}_{10}^{1}$+22${C}_{10}^{2}$+32${C}_{10}^{3}$•+…+n2${C}_{10}^{10}$=10×29+90×28=10×28×(2+90)=920×28.
点评 本题考查了二项式定理,类比推理,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com