精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x3-ax2-3x
(1)若x=-$\frac{1}{3}$是f(x)的极值点,求f(x)在[-1,a]上的最大值和最小值.
(2)若f(x)在区间上[1,+∞)是增函数,求实数a的取值范围.

分析 (1)由f′(-$\frac{1}{3}$)=3×$\frac{1}{9}$+2a×$\frac{1}{3}$-3=0,得a=4,f(x)=x3-4x2-12,f′(x)=3x2-8x-3=(x-3)(3x+1)=0,解得x=-$\frac{1}{3}$,3,讨论定义域内各区间导数的符号,从而确定最值.
(2)f(x)在区间上[1,+∞)是增函数,则f′(x)=3x2-2ax-3≥0在[1,+∞)恒成立,即a$≤\frac{3}{2}(x-\frac{1}{x})$在[1,+∞)恒成立,a$≤[\frac{3}{2}(x-\frac{1}{x})]_{min}$即可

解答 解:(1)f′(x)=3x2-2ax-3,x=-$\frac{1}{3}$是f(x)的极值点,则f′(-$\frac{1}{3}$)=3×$\frac{1}{9}$+2a×$\frac{1}{3}$-3=0,
解得a=4,f(x)=x3-4x2-12,f′(x)=3x2-8x-3=(x-3)(3x+1)=0,解得x=-$\frac{1}{3}$,3,
x,f(x),f′(x)变化如下表:

x-1(-1-$\frac{1}{3}$)-$\frac{1}{3}$(-$\frac{1}{3},3$)3(3,4)4
f′(x)+0-0+
f(x)-2增函数$\frac{14}{27}$减函数-18增函数-12
所以f(x)max=f(-$\frac{1}{3}$)=$\frac{14}{27}$,f(x)min=f(3)=18
(2)函数f(x)=x3-ax2-3x求导得f′(x)=3x2-2ax-3,
f(x)在区间上[1,+∞)是增函数,则f′(x)=3x2-2ax-3≥0在[1,+∞)恒成立,
即a$≤\frac{3}{2}(x-\frac{1}{x})$在[1,+∞)恒成立,a$≤[\frac{3}{2}(x-\frac{1}{x})]_{min}$,y=x-$\frac{1}{x}$在[1,+∞)为增函数,则(x-$\frac{1}{x}$)min=0
∴a≤0,∴实数a的取值范围为(-∞,0]

点评 本题考查了导数的应用,利用导数求极值、单调性、最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某校统计了高一年级两个重点班的所有学生期中考试数学成绩,根据考试分数,学生成绩在[90,150]范围内,得结果如表:
甲班:
分组[90,105)[105,120)[120,135)[135,150)
频数1025105
乙班:
分组[90,105)[105,120)[120,130)[135,150)
频数3172010
(1)规定分数120分以上的为学生为优秀学生,分别估计两个班的优秀学生率;
(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个班的优秀学生有差异”.(参考9题数据)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导运算正确的个数是(  )
①$(x-\frac{1}{x})'=1+\frac{1}{x^2}$、
②(log2x)′=$\frac{1}{xln2}$
③(3x)′=3xlog3x             
④(x2cosx)′=-2xsinx.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.请阅读:在等式cos2x=2cos2x-1(x∈R)的两边对x求导,得(-sin2x)•2=4cosx(-sinx),化简后得等式sin2x=2cosxsinx.
利用上述方法,试由等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整数n≥2),
(1)证明:$n[{(1+x)^{n-1}}-1]=\sum_{k=2}^n{kC_n^k{x^{k-1}}}$;(注:$\sum_{i=1}^n{{a_i}={a_1}+{a_2}+…+{a_n}}$)
(2)求$C_{10}^1+2C_{10}^2+3C_{10}^3+…+10C_{10}^{10}$;
(3)求${1^2}C_{10}^1+{2^2}C_{10}^2+{3^2}C_{10}^3+…+{10^2}C_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-x2-1,x∈R
(1)求函数f(x)的图象在点(0,f(0))处的切线方程;
(2)当x∈R时,求证:f(x)≥-x2+x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简下列各式:
(1)sin(3π+α)+tan(α-π)sin($\frac{π}{2}$+α)
(2)$\frac{1-tan15°}{1+tan15°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知各项都为正数的等比数列{an}满足a5=2a4+3a3,存在两项am,an使得$\sqrt{{a_m}•{a_n}}=27{a_1}$,则$\frac{1}{m}+\frac{4}{n}$的最小值为
$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值是(  )
A.-$\sqrt{3}$B.-1C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x>0},则∁RA=(  )
A.{x|x<0}B.{x|x≤0}C.{x|x>0}}D.{x|x≥0}

查看答案和解析>>

同步练习册答案