精英家教网 > 高中数学 > 题目详情
9.在(1+x)2018展开式中,系数最大的项是(  )
A.第1010项B.第1009项
C.第1008项D.第1010项和第1009项

分析 利用二项展开式的通项公式求出通项,得出二项式系数与系数相等,据展开式中间项的二项式系数最大求出最大系数.

解答 解:(1+x)2018的通项为Tr+1=C2018rxr
∴(1+x)2018的展开式的二项式系数与展开式的系数相等
据展开式中间项的二项式系数最大
又展开式共有2019项
∴系数最大的项是1010项,
故选:A

点评 本题考查二项式的通项公式及二项式系数的性质:展开式中间项的二项式系数最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{AB},\overrightarrow{AC}$不共线,$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$))(λ∈R),则点P的轨迹一定过△ABC的(  )
A.重心B.内心C.外心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过原点O作斜率为k1(k1≠0)的直线l交抛物线Γ:y=$\frac{1}{4}$x2-1于A,B 两点,
(1)当k1=1时,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延长AM交抛物线Γ于C点,延长BM交抛物线Γ于D点.记直线CD的斜率为k2,问是否存在实数λ,都有k2=λk1成立,如果存在,请求出λ的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$( x∈R)在区间[1,2]上是增函数.
(1)若函数f(x)在区间[1,2]上是增函数,求实数a的值组成的集合A;
(2)设关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导运算正确的个数是(  )
①$(x-\frac{1}{x})'=1+\frac{1}{x^2}$、
②(log2x)′=$\frac{1}{xln2}$
③(3x)′=3xlog3x             
④(x2cosx)′=-2xsinx.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设an(n=2,3,4,…)是(3+$\sqrt{x}$)n的展开式中x的一次项的系数,则$\frac{2017}{1008}$($\frac{{3}^{2}}{{a}_{2}}$+$\frac{{3}^{3}}{{a}_{3}}$+…+$\frac{{3}^{2017}}{{a}_{2017}}$)的值是36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.请阅读:在等式cos2x=2cos2x-1(x∈R)的两边对x求导,得(-sin2x)•2=4cosx(-sinx),化简后得等式sin2x=2cosxsinx.
利用上述方法,试由等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整数n≥2),
(1)证明:$n[{(1+x)^{n-1}}-1]=\sum_{k=2}^n{kC_n^k{x^{k-1}}}$;(注:$\sum_{i=1}^n{{a_i}={a_1}+{a_2}+…+{a_n}}$)
(2)求$C_{10}^1+2C_{10}^2+3C_{10}^3+…+10C_{10}^{10}$;
(3)求${1^2}C_{10}^1+{2^2}C_{10}^2+{3^2}C_{10}^3+…+{10^2}C_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简下列各式:
(1)sin(3π+α)+tan(α-π)sin($\frac{π}{2}$+α)
(2)$\frac{1-tan15°}{1+tan15°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.7人站成一排,求满足下列条件的不同站法:
(1)甲、乙两人相邻;
(2)甲、乙之间隔着2人;
(3)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变;
(4)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法;
(5)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法.

查看答案和解析>>

同步练习册答案