精英家教网 > 高中数学 > 题目详情
20.过原点O作斜率为k1(k1≠0)的直线l交抛物线Γ:y=$\frac{1}{4}$x2-1于A,B 两点,
(1)当k1=1时,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延长AM交抛物线Γ于C点,延长BM交抛物线Γ于D点.记直线CD的斜率为k2,问是否存在实数λ,都有k2=λk1成立,如果存在,请求出λ的值;如果不存在,请说明理由.

分析 (1)联立方程组,解出A,B坐标,计算|OA|,|OB|即可得出答案;
(2)联立方程组,得出A,B坐标的关系,根据三点共线得出C,D坐标与A,B坐标的关系,从而得出k2与k1的关系.

解答 解:(1)联立方程组$\left\{\begin{array}{l}{y=x}\\{y=\frac{1}{4}{x}^{2}-1}\end{array}\right.$,消去y得x2-4x-4=0,
解得x=y=2-2$\sqrt{2}$或x=y=2+2$\sqrt{2}$,
∴|OA|=$\sqrt{2}$(2$\sqrt{2}$-2)=4-2$\sqrt{2}$,|OB|=$\sqrt{2}$(2+2$\sqrt{2}$)=4+2$\sqrt{2}$,
∴$\frac{1}{|OA|}+\frac{1}{|OB|}$=$\frac{1}{4-2\sqrt{2}}+\frac{1}{4+2\sqrt{2}}$=$\frac{4+2\sqrt{2}}{8}$+$\frac{4-2\sqrt{2}}{8}$=1.
(2)联立方程组$\left\{\begin{array}{l}{y={k}_{1}x}\\{y=\frac{1}{4}{x}^{2}-1}\end{array}\right.$,消去y得x2-4k1x-4=0,
△=16k12+16>0恒成立,
设A(x1,y1),B(x2,y2),则x1+x2=4k1,x1x2=-4,
设C(x3,y3),D(x4,y4),
直线AM方程为y=$\frac{{y}_{1}-3}{{x}_{1}}$x+3,代入y=$\frac{1}{4}{x}^{2}$-1得$\frac{1}{4}{x}^{2}-\frac{{y}_{1}-3}{{x}_{1}}x-4=0$,
∴x1x3=-16,即x3=-$\frac{16}{{x}_{1}}$.
同理,x4=-$\frac{16}{{x}_{2}}$,
∴k2=$\frac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}$=$\frac{1}{4}$(x3+x4)=$\frac{1}{4}$(-$\frac{16}{{x}_{1}}$-$\frac{16}{{x}_{2}}$)=-$\frac{4({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=4k1
∴λ=4.

点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=x3-x2是区间[0,a]上的双中值函数,则实数a的取值范围是$({\frac{1}{2},1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:
A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;
C说:“我做坏了,A做好了”.
现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面向量$\overrightarrow a,\overrightarrow b$的夹角为120°,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=4$,若$(n\overrightarrow a+\overrightarrow b)⊥\overrightarrow a$,则n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\sqrt{3}$sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$),A($\frac{1}{3}$,0)为f(x)图象的对称中心,若该图象上相邻两条对称轴间的距离为2,则f(x)的单调递增区间是(  )
A.(2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈ZB.(2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$),k∈Z
C.(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈ZD.(4kπ-$\frac{2π}{3}$,4kπ+$\frac{4π}{3}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若定义在[-2017,2017]上的函数f(x)满足:对任意x1∈[-2017,2017],x2∈[-2017,2017]都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时有f(x)>2016,f(x)的最大值、最小值分别为M、N,则M+N=(  )
A.2016B.2017C.4034D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)在定义域R内可导,若任意的x∈R,都有f(x)=f(2-x),且当x≠1时,有(x-1)f'(x)>0,设a=f(lne),b=f(ln2),$c=f(ln\frac{1}{e})$,则a、b、c的大小关系为(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在(1+x)2018展开式中,系数最大的项是(  )
A.第1010项B.第1009项
C.第1008项D.第1010项和第1009项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R),
(1)判断并证明函数的单调性;  
(2)是否存在实数a,使函数f(x)为奇函数.证明你的结论.

查看答案和解析>>

同步练习册答案