精英家教网 > 高中数学 > 题目详情
4.定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=x3-x2是区间[0,a]上的双中值函数,则实数a的取值范围是$({\frac{1}{2},1})$.

分析 根据题目给出的定义得到${f}^{'}({x}_{1})={f}^{'}({x}_{2})=\frac{f(a)-f(0)}{a}={a}^{2}-a$,即方程3x2-2x=a2-a在区间(0,a)有两个解,利用二次函数的性质能求出a的取值范围.

解答 解:∵f(x)=x3-x2,∴f′(x)=3x2-2x,
∵函数f(x)=x3-x2是区间[0,a]上的双中值函数,
∴区间[0,a]上存在x1,x2(0<x1<x2<a),
满足${f}^{'}({x}_{1})={f}^{'}({x}_{2})=\frac{f(a)-f(0)}{a}={a}^{2}-a$,
∴方程3x2-2x=a2-a在区间(0,a)有两个不相等的解,
令g(x)=3x2-2x-a2+a,(0<x<a),
则$\left\{\begin{array}{l}{△=4-12(-{a}^{2}+a)>0}\\{g(0)=-{a}^{2}+a>0}\\{g(a)=2{a}^{2}-a>0}\end{array}\right.$,解得$\frac{1}{2}<a<1$,
∴实数a的取值范围是($\frac{1}{2},1$).
故答案为:($\frac{1}{2},1$).

点评 本题考查实数的取值范围的求法,考查导数的性质及应用等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.观察下列数表:
2
4,6
8,10,12,14
16,18,20,22,24,26,28,30

设2016是该表第m行的第n个数,则m+n=507.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-4x-5≤0},函数y=ln(x2-4)的定义域为B.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x≤a-1},且A∪(∁RB)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,平面内有三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,∠AOB=120°,∠AOC=45°,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ的值为$\sqrt{6}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=2+2cosφ\\ y=2sinφ\end{array}\right.$(φ为参数),直线l的方程为x+$\sqrt{3}$y-9=0,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C和直线l的极坐标方程;
(2)射线OA:θ=$\frac{π}{6}$与圆C的交点是O,M,与直线l的交点为N,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ-6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}中,a2,a2016是方程x2-2x-2=0的两根,则S2017=(  )
A.-2017B.-1008C.1008D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{AB},\overrightarrow{AC}$不共线,$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$))(λ∈R),则点P的轨迹一定过△ABC的(  )
A.重心B.内心C.外心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过原点O作斜率为k1(k1≠0)的直线l交抛物线Γ:y=$\frac{1}{4}$x2-1于A,B 两点,
(1)当k1=1时,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延长AM交抛物线Γ于C点,延长BM交抛物线Γ于D点.记直线CD的斜率为k2,问是否存在实数λ,都有k2=λk1成立,如果存在,请求出λ的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案