精英家教网 > 高中数学 > 题目详情
9.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ-6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

分析 (1)曲线C的参数方程消去参数能求出曲线C的普通方程,由直线l的极坐标方程能求出直线l的直角坐标方程.
(2)设曲线C上任意一点P(2cosθ,3sinθ),P到直线l的距离为d=$\frac{\sqrt{5}}{5}$|4cosθ+3sinθ-6|,则|PA|=$\frac{d}{sin30°}$=$\frac{2\sqrt{5}}{5}$|5sin(θ+α)-6|,由此能求出|PA|的最大值与最小值.

解答 解:(1)∵曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),
∴曲线C的普通方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}$=1,
∵直线l的极坐标方程2ρcosθ+ρsinθ-6=0,
∴直线l的直角坐标方程为2x+y-6=0.
(2)设曲线C上任意一点P(2cosθ,3sinθ),
P到直线l的距离为d=$\frac{\sqrt{5}}{5}$|4cosθ+3sinθ-6|,
则|PA|=$\frac{d}{sin30°}$=$\frac{2\sqrt{5}}{5}$|5sin(θ+α)-6|,其中α为锐角,
当sin(θ+α)=-1时,|PA|取得最大值,最大值为$\frac{22\sqrt{5}}{5}$.
当sin(θ+α)=1时,|PA|取得最小值,最小值为$\frac{2\sqrt{5}}{5}$.

点评 本题考查曲线的普通方程、直线的直角坐标方程的求法,考查弦长的最大值和最小值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则$\frac{1}{{h}_{1}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$;类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两相垂直,底面ABC上的高为h,则得到的正确结论为(  )
A.$\frac{1}{h}$=$\frac{1}{PA}$+$\frac{1}{PB}$+$\frac{1}{PC}$B.$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
C.$\frac{1}{{h}^{3}}$=$\frac{1}{P{A}^{3}}$+$\frac{1}{P{B}^{3}}$+$\frac{1}{P{C}^{3}}$D.$\frac{1}{{h}^{4}}$=$\frac{1}{P{A}^{4}}$+$\frac{1}{P{B}^{4}}$+$\frac{1}{P{C}^{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知极坐标系的极点为平面直角坐标系xOy的原点,极轴为x轴正半轴,两种坐标系中的长度单位相同,曲线C的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),直线l过点(-1,0),且斜率为$\frac{1}{2}$,射线OM的极坐标方程为$θ=\frac{3π}{4}$.
(1)求曲线C和直线l的极坐标方程;
(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$和$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数)则它们的交点坐标为$(\frac{4}{3},\frac{1}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=x3-x2是区间[0,a]上的双中值函数,则实数a的取值范围是$({\frac{1}{2},1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x-2=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),在以原点O为极点,以x轴正半轴为极轴,且与直角坐标系有相同的长度单位的极坐标系中,直线l的方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(3)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知b=3cm、c=2cm,A=60°;
(1)求a的长;
(2)求△ABC的面积;
(3)求sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.小明家的桌子上有编号分别为①②③的三个盒子,已知这三个盒子中只有一个盒子里有硬币.
①号盒子上写有:硬币在这个盒子里;
②号盒子上写有:硬币不在这个盒子里;
③号盒子上写有:硬币不在①号盒子里.
若这三个论断中有且只有一个为真,则硬币所在盒子的编号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若定义在[-2017,2017]上的函数f(x)满足:对任意x1∈[-2017,2017],x2∈[-2017,2017]都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时有f(x)>2016,f(x)的最大值、最小值分别为M、N,则M+N=(  )
A.2016B.2017C.4034D.4032

查看答案和解析>>

同步练习册答案