精英家教网 > 高中数学 > 题目详情
20.已知极坐标系的极点为平面直角坐标系xOy的原点,极轴为x轴正半轴,两种坐标系中的长度单位相同,曲线C的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),直线l过点(-1,0),且斜率为$\frac{1}{2}$,射线OM的极坐标方程为$θ=\frac{3π}{4}$.
(1)求曲线C和直线l的极坐标方程;
(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

分析 (1)曲线C的参数方程消去参数得到曲线C的普通方程,将x=ρcosθ,y=ρsinθ代入,能求出曲线C的极坐标方程;先求出直线l的方程,由此能求出直线l的极坐标方程.
(2)当$θ=\frac{3π}{4}$时,分别求出|OP|和|OQ|,由此能求出线段PQ的长.

解答 解:(1)∵曲线C的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),
∴曲线C的普通方程为(x+1)2+(y-1)2=2,
将x=ρcosθ,y=ρsinθ代入整理得ρ+2cosθ-2sinθ=0,
即曲线C的极坐标方程为$ρ=2\sqrt{2}sin({θ-\frac{π}{4}})$.
∵直线l过点(-1,0),且斜率为$\frac{1}{2}$,
∴直线l的方程为$y=\frac{1}{2}({x+1})$,
∴直线l的极坐标方程为ρcosθ-2ρsinθ+1=0.
(2)当$θ=\frac{3π}{4}$时,$|{OP}|=2\sqrt{2}sin({\frac{3π}{4}-\frac{π}{4}})=2\sqrt{2},|{OQ}|=\frac{1}{{2×\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}}}=\frac{{\sqrt{2}}}{3}$,
故线段PQ的长为$2\sqrt{2}-\frac{{\sqrt{2}}}{3}=\frac{{5\sqrt{2}}}{3}$.

点评 本题考查曲线和直线的极坐标方程的求法,考查线段长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若实数a,b满足a>b且lna•lnb>0,则(  )
A.loga2>logb2B.a•lna>b•lnbC.2ab+1>2a+bD.ab>ba

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为(  )
A.$C_{30}^2$$C_{20}^2$$C_{46}^1$
B.$C_{50}^5-C_{30}^5-C_{20}^5$
C.$C_{50}^5-C_{30}^1C_{20}^4-C_{30}^4C_{20}^1$
D.$C_{30}^3C_{20}^2+C_{30}^2C_{20}^3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点M的直角坐标为($\sqrt{3}$,1,-2),则它的球坐标为(  )
A.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$)B.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$)C.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$)D.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-4x-5≤0},函数y=ln(x2-4)的定义域为B.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x≤a-1},且A∪(∁RB)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知y=f(x)是定义在R上的奇函数,f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,且当函数y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零点个数取得最大值时,则实数k的取值范围是($\frac{1}{4},6-\sqrt{30}$).($\sqrt{2}≈$1.414,$\sqrt{30}$≈5.477)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,平面内有三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,∠AOB=120°,∠AOC=45°,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ的值为$\sqrt{6}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ-6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-lnx+m,若曲线y=f(x)在(2,f(2))处的切线方程为x-2y-2ln2=0.
(1)求m的值;
(2)若对于任意x∈(0,1],总有f(x)≥a(x-1)2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案