精英家教网 > 高中数学 > 题目详情
8.点M的直角坐标为($\sqrt{3}$,1,-2),则它的球坐标为(  )
A.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$)B.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$)C.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$)D.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$)

分析 根据球坐标与直角坐标的对应关系列方程组求出.

解答 解:设M的球坐标为M(r,φ,θ),
则r=$\sqrt{3+1+4}$=2$\sqrt{2}$,
2$\sqrt{2}$cosφ=-2,∴φ=$\frac{3π}{4}$,
2$\sqrt{2}$sinφsinθ=1,∴θ=$\frac{π}{6}$,
∴M的球坐标为(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$).
故选A.

点评 本题考查了球坐标与直角坐标的对应关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.把正整数排成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙的数按从小到大的顺序排成一列,得到一个数列{an},则a2014=3965.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则$\frac{1}{{h}_{1}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$;类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两相垂直,底面ABC上的高为h,则得到的正确结论为(  )
A.$\frac{1}{h}$=$\frac{1}{PA}$+$\frac{1}{PB}$+$\frac{1}{PC}$B.$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
C.$\frac{1}{{h}^{3}}$=$\frac{1}{P{A}^{3}}$+$\frac{1}{P{B}^{3}}$+$\frac{1}{P{C}^{3}}$D.$\frac{1}{{h}^{4}}$=$\frac{1}{P{A}^{4}}$+$\frac{1}{P{B}^{4}}$+$\frac{1}{P{C}^{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为13+23+33+43+53+63=(21)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如果一个几何体的俯视图中有圆,则这个几何体中可能有圆柱、圆台、圆锥、球.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(折算成了百分制),规定成绩在85分以上(含85分)为优秀.列联表如下:
数学成绩优秀(人)数学成绩不优秀(人)合计
物理成绩优秀(人)a=5b=2a+b=7
物理成绩不优秀(人)c=1d=12c+d=13
合计a+c=6b+d=14n=a+b+c+d=20
(1)将列联表补充完整;
(2)若在这20名学生中任意选择一人参加比赛,求其物理和数学成绩都优秀的概率;
(3)能否在犯错误的概率不超过0.01的前提下认为物理成绩与数学成绩有关系?(参考公式及参考数据见卷首)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知极坐标系的极点为平面直角坐标系xOy的原点,极轴为x轴正半轴,两种坐标系中的长度单位相同,曲线C的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),直线l过点(-1,0),且斜率为$\frac{1}{2}$,射线OM的极坐标方程为$θ=\frac{3π}{4}$.
(1)求曲线C和直线l的极坐标方程;
(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$和$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数)则它们的交点坐标为$(\frac{4}{3},\frac{1}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.小明家的桌子上有编号分别为①②③的三个盒子,已知这三个盒子中只有一个盒子里有硬币.
①号盒子上写有:硬币在这个盒子里;
②号盒子上写有:硬币不在这个盒子里;
③号盒子上写有:硬币不在①号盒子里.
若这三个论断中有且只有一个为真,则硬币所在盒子的编号为②.

查看答案和解析>>

同步练习册答案