分析 观察乙图,前k行共有$\frac{k(k+1)}{2}$个数,第k行最后的一个数为k2,然后以判断出则a2014出现在第63行从右起的第三个数,即可求出所求.
解答 解:分析图乙,则前k行共有$\frac{k(k+1)}{2}$个数,第k行最后的一个数为k2,
若a2014位于第k行,
则$\frac{k(k-1)}{2}$<2014≤$\frac{k(k+1)}{2}$,
又由$\frac{63×64}{2}$=2016,$\frac{62×63}{2}$=1953,
则a2014出现在第63行从右起的第三个数,
由以上可知a2014=632-4=3965
故答案为:3965
点评 本题考查归纳推理的运用,关键在于分析乙图,发现每一行的数递增规律与各行之间数字数目的变化规律,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 拼图数x/个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| 加工时间y/分钟 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
| 参考数据 | 合计 | ||||||||||
| x | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 550 |
| y | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 | 917 |
| xi2 | 100 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | 38500 |
| xiyi | 620 | 1360 | 2250 | 3240 | 4450 | 5700 | 7140 | 8840 | 10350 | 12200 | 55950 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | loga2>logb2 | B. | a•lna>b•lnb | C. | 2ab+1>2a+b | D. | ab>ba |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$) | B. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$) | C. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$) | D. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com