精英家教网 > 高中数学 > 题目详情
6.在△ABC中,D为AC中点,$\overrightarrow{AB}$=4$\overrightarrow{AE}$,直线BD交CE于点M,过M的动直线l分别交线段CD、BE于P、Q两点,若$\overrightarrow{AB}$=x$\overrightarrow{AQ}$,$\overrightarrow{AC}$=y$\overrightarrow{AP}$,则xy的最大值为$\frac{49}{12}$.

分析 如图所示,由向量共线定理可设:$\overrightarrow{AM}$=a$\overrightarrow{AE}$+(1-a)$\overrightarrow{AC}$=$\frac{a}{4}$$\overrightarrow{AB}$+(1-a)$\overrightarrow{AC}$.$\overrightarrow{AM}$=b$\overrightarrow{AB}$+(1-b)$\overrightarrow{AD}$=b$\overrightarrow{AB}$+$\frac{1}{2}$(1-b)$\overrightarrow{AC}$.比较系数可得a,b.$\overrightarrow{AM}$=$\frac{1}{7}$$\overrightarrow{AB}$+$\frac{3}{7}$$\overrightarrow{AC}$.设$\overrightarrow{AM}$=c$\overrightarrow{AQ}$+(1-c)$\overrightarrow{AP}$=$\frac{c}{x}\overrightarrow{AB}$+$\frac{1-c}{y}$$\overrightarrow{AC}$,可得$\frac{c}{x}$=$\frac{1}{7}$,$\frac{1-c}{y}$=$\frac{3}{7}$,消去c,利用基本不等式的性质即可得出.

解答 解:如图所示,
由向量共线定理可设:$\overrightarrow{AM}$=a$\overrightarrow{AE}$+(1-a)$\overrightarrow{AC}$=$\frac{a}{4}$$\overrightarrow{AB}$+(1-a)$\overrightarrow{AC}$.
$\overrightarrow{AM}$=b$\overrightarrow{AB}$+(1-b)$\overrightarrow{AD}$=b$\overrightarrow{AB}$+$\frac{1}{2}$(1-b)$\overrightarrow{AC}$.
∴$\frac{a}{4}$=b,1-a=$\frac{1}{2}$(1-b),
解得a=$\frac{4}{7}$,b=$\frac{1}{7}$.
∴$\overrightarrow{AM}$=$\frac{1}{7}$$\overrightarrow{AB}$+$\frac{3}{7}$$\overrightarrow{AC}$.
设$\overrightarrow{AM}$=c$\overrightarrow{AQ}$+(1-c)$\overrightarrow{AP}$
=$\frac{c}{x}\overrightarrow{AB}$+$\frac{1-c}{y}$$\overrightarrow{AC}$,
∴$\frac{c}{x}$=$\frac{1}{7}$,$\frac{1-c}{y}$=$\frac{3}{7}$,
可得:x+3y=7.
∴7≥$2\sqrt{x•3y}$,化为:xy≤$\frac{49}{12}$.当且仅当x=3y=$\frac{7}{2}$时取等号.
则xy的最大值$\frac{49}{12}$.
故答案为:$\frac{49}{12}$.

点评 本题考查了平面向量基本定理、向量共线定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.对于事件X与Y的χ2的统计量的观测值k,下列说法不正确的是①②④.
①k越大,说明“X与Y有关”的可信度越小
②k越大,说明“X与Y无关”的可信度越大
③k越小,说明“X与Y有关”的可信度越小
④k越接近于0,说明“X与Y无关”的程度越小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是某几何体的三视图,俯视图是边长为2的正三角形,则该几何体的体积是$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(2+x)+lg(2-x).
(Ⅰ) 记函数g(x)=10f(x)+3x,求函数g(x)的值域;
(Ⅱ) 若不等式f(x)>m2-3m-18+lg4有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2+4≤5x,x∈R},B={(x,y)|y=3x+2,x∈R},则A∩B=(  )
A.(2,4]B.(2,+∞)C.[2,4]D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=|log3x|,若f(a)>f(3),则实数a的取值范围是(0,$\frac{1}{3}$)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把正整数排成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙的数按从小到大的顺序排成一列,得到一个数列{an},则a2014=3965.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是2017年第一季度五省GDP情况图,则下列陈述正确的是(  )

①2017年第一季度GDP总量和增速均居同一位的省只有1个;
②与去年同期相比,2017年第一季度五个省的GDP总量均实现了增长;
③去年同期的GDP总量前三位是江苏、山东、浙江;
④2016年同期浙江的GDP总量也是第三位.
A.①②B.②③④C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为13+23+33+43+53+63=(21)2

查看答案和解析>>

同步练习册答案