精英家教网 > 高中数学 > 题目详情
16.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为13+23+33+43+53+63=(21)2

分析 左边是连续自然数的立方和,右边是左边的数的和的立方,由此得到结论.

解答 解:∵13+23=9=(1+2)2
13+23+33=36=(1+2+3)2
13+23+33+43=100=(1+2+3+4)2

由以上可以看出左边是连续自然数的立方和,右边是左边的数的和的立方,
照此规律,第n个等式可为:13+23+33+43+53+63=(1+2+3+4+5+6)2=212
故答案为:21

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,D为AC中点,$\overrightarrow{AB}$=4$\overrightarrow{AE}$,直线BD交CE于点M,过M的动直线l分别交线段CD、BE于P、Q两点,若$\overrightarrow{AB}$=x$\overrightarrow{AQ}$,$\overrightarrow{AC}$=y$\overrightarrow{AP}$,则xy的最大值为$\frac{49}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”从新开始,即“甲戊”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到新中国成立80年时,即2029年为己酉年.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将全体正奇数排成一个三角形数阵:
$\begin{array}{l}1&{\;}&{\;}&{\;}&{\;}&{\;}\\ 3&5&{\;}&{\;}&{\;}&{\;}\\ 7&9&{11}&{\;}&{\;}&{\;}\\{13}&{15}&{17}&{19}&{\;}&{\;}\\{…}&{\;}&{\;}&{\;}&{\;}&{\;}\end{array}$
按照以上规律的排列,求第n(n≥3)行从右到左的第三个数为n2+n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为(  )
A.$C_{30}^2$$C_{20}^2$$C_{46}^1$
B.$C_{50}^5-C_{30}^5-C_{20}^5$
C.$C_{50}^5-C_{30}^1C_{20}^4-C_{30}^4C_{20}^1$
D.$C_{30}^3C_{20}^2+C_{30}^2C_{20}^3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为(  )
A.$\frac{\sqrt{3}}{2}$a 2B.$\frac{\sqrt{3}}{4}$a 2C.$\frac{\sqrt{6}}{2}$a 2D.$\sqrt{6}$a 2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点M的直角坐标为($\sqrt{3}$,1,-2),则它的球坐标为(  )
A.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$)B.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$)C.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$)D.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知y=f(x)是定义在R上的奇函数,f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,且当函数y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零点个数取得最大值时,则实数k的取值范围是($\frac{1}{4},6-\sqrt{30}$).($\sqrt{2}≈$1.414,$\sqrt{30}$≈5.477)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面三种说法,其中正确的是(  )
①一个平面内只有一对不共线向量可作为表示该平面的基底;
②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;
③零向量不可以作为基底中的向量.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步练习册答案