分析 曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$化为普通方程:$\frac{{x}^{2}}{2}+{y}^{2}$=1.(y≥0).由$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),消去参数化为普通方程.代入椭圆方程即可得出.
解答 解:曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$化为普通方程:$\frac{{x}^{2}}{2}+{y}^{2}$=1.(y≥0).
由$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),消去参数化为普通方程:x=1+y.
代入椭圆方程可得:3y2+2y-1=0,y≥0,解得y=$\frac{1}{3}$,x=$\frac{4}{3}$.
则它们的交点坐标为$(\frac{4}{3},\frac{1}{3})$.
故答案为:$(\frac{4}{3},\frac{1}{3})$.
点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$) | B. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$) | C. | (2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$) | D. | (2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\sqrt{3}$ | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com