精英家教网 > 高中数学 > 题目详情
17.已知两曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$和$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数)则它们的交点坐标为$(\frac{4}{3},\frac{1}{3})$.

分析 曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$化为普通方程:$\frac{{x}^{2}}{2}+{y}^{2}$=1.(y≥0).由$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),消去参数化为普通方程.代入椭圆方程即可得出.

解答 解:曲线的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$化为普通方程:$\frac{{x}^{2}}{2}+{y}^{2}$=1.(y≥0).
由$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),消去参数化为普通方程:x=1+y.
代入椭圆方程可得:3y2+2y-1=0,y≥0,解得y=$\frac{1}{3}$,x=$\frac{4}{3}$.
则它们的交点坐标为$(\frac{4}{3},\frac{1}{3})$.
故答案为:$(\frac{4}{3},\frac{1}{3})$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”从新开始,即“甲戊”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到新中国成立80年时,即2029年为己酉年.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点M的直角坐标为($\sqrt{3}$,1,-2),则它的球坐标为(  )
A.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{6}$)B.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{6}$)C.(2$\sqrt{2}$,$\frac{π}{4}$,$\frac{π}{3}$)D.(2$\sqrt{2}$,$\frac{3π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知y=f(x)是定义在R上的奇函数,f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,且当函数y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零点个数取得最大值时,则实数k的取值范围是($\frac{1}{4},6-\sqrt{30}$).($\sqrt{2}≈$1.414,$\sqrt{30}$≈5.477)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,平面内有三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,∠AOB=120°,∠AOC=45°,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ的值为$\sqrt{6}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将正奇数1,3,5,7,…排成五列(如表),按此表的排列规律,2017所在的位置是(  )
A.第一列B.第二列C.第三列D.第四列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ-6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面三种说法,其中正确的是(  )
①一个平面内只有一对不共线向量可作为表示该平面的基底;
②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;
③零向量不可以作为基底中的向量.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,则tanC=(  )
A.-1B.1C.$\sqrt{3}$D.-2

查看答案和解析>>

同步练习册答案