精英家教网 > 高中数学 > 题目详情
14.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x-2=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),在以原点O为极点,以x轴正半轴为极轴,且与直角坐标系有相同的长度单位的极坐标系中,直线l的方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(3)求直线l被曲线C截得的弦长.

分析 (1)由曲线C的参数方程消去参数,能求出曲线C的普通方程;线l的方程的极坐标方程转化为$\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ)=2$\sqrt{2}$,由此能求出直线l的直角坐标方程.
(2)联立$\left\{\begin{array}{l}{(x-2)^{2}+{y}^{2}=4}\\{x+y-4=0}\end{array}\right.$,得直线l与曲线C的交点坐标为(2,2),(4,0),由此利用两点间距离公式能求出直线l被曲线C截得的弦长.

解答 解:(1)∵曲线C的参数方程为$\left\{\begin{array}{l}{x-2=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
∴曲线C的普通方程为(x-2)2+y2=4,
∵直线l的方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,
即$ρsinθcos\frac{π}{4}+ρcosθsin\frac{π}{4}$=$\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ)=2$\sqrt{2}$,
∴直线l的直角坐标方程为x+y-4=0.
(2)联立$\left\{\begin{array}{l}{(x-2)^{2}+{y}^{2}=4}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,
∴直线l与曲线C的交点坐标为(2,2),(4,0),
∴直线l被曲线C截得的弦长为:
$\sqrt{(4-2)^{2}+(0-2)^{2}}$=$2\sqrt{2}$.

点评 本题考查曲线的普通方程、直线的直角坐标方程的求法,考查直线被曲线截得的弦长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.将全体正奇数排成一个三角形数阵:
$\begin{array}{l}1&{\;}&{\;}&{\;}&{\;}&{\;}\\ 3&5&{\;}&{\;}&{\;}&{\;}\\ 7&9&{11}&{\;}&{\;}&{\;}\\{13}&{15}&{17}&{19}&{\;}&{\;}\\{…}&{\;}&{\;}&{\;}&{\;}&{\;}\end{array}$
按照以上规律的排列,求第n(n≥3)行从右到左的第三个数为n2+n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知y=f(x)是定义在R上的奇函数,f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,且当函数y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零点个数取得最大值时,则实数k的取值范围是($\frac{1}{4},6-\sqrt{30}$).($\sqrt{2}≈$1.414,$\sqrt{30}$≈5.477)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将正奇数1,3,5,7,…排成五列(如表),按此表的排列规律,2017所在的位置是(  )
A.第一列B.第二列C.第三列D.第四列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ-6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.P在圆A:x2+(y+3)2=4上,点Q在圆B:(x-6)2+y2=16上,则|PQ|的最小值为3$\sqrt{5}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面三种说法,其中正确的是(  )
①一个平面内只有一对不共线向量可作为表示该平面的基底;
②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;
③零向量不可以作为基底中的向量.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={ x丨-2<x<1},B={x丨x2-2x≤0},则A∩B等于(  )
A.{ x丨0<x<1}B.{ x丨0≤x<1}C.{ x丨0<x≤1}D.{ x丨-2<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一物体在力F(x)=ex+2x(单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=3处(单位:m),则力F(x)所作的功为(  )
A.e3+9B.e3+8C.e3+2D.e3+1

查看答案和解析>>

同步练习册答案