精英家教网 > 高中数学 > 题目详情
6.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取80人进行问卷调查,已知高二被抽取的人数为30,那么n=1000.

分析 由分层抽样的性质列出方程,能求出结果.

解答 解:采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取80人进行问卷调查,
已知高二被抽取的人数为30,分层抽样是按比例抽样,
则由分层抽样的性质得:
80×$\frac{1200}{1000+1200+n}$=30,
解得n=1000.
故答案为:1000.

点评 本题考查分层抽样的应用,是基础题,解题时要认真审题,注意分层抽样的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-lnx+m,若曲线y=f(x)在(2,f(2))处的切线方程为x-2y-2ln2=0.
(1)求m的值;
(2)若对于任意x∈(0,1],总有f(x)≥a(x-1)2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$( x∈R)在区间[1,2]上是增函数.
(1)若函数f(x)在区间[1,2]上是增函数,求实数a的值组成的集合A;
(2)设关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设an(n=2,3,4,…)是(3+$\sqrt{x}$)n的展开式中x的一次项的系数,则$\frac{2017}{1008}$($\frac{{3}^{2}}{{a}_{2}}$+$\frac{{3}^{3}}{{a}_{3}}$+…+$\frac{{3}^{2017}}{{a}_{2017}}$)的值是36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.请阅读:在等式cos2x=2cos2x-1(x∈R)的两边对x求导,得(-sin2x)•2=4cosx(-sinx),化简后得等式sin2x=2cosxsinx.
利用上述方法,试由等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整数n≥2),
(1)证明:$n[{(1+x)^{n-1}}-1]=\sum_{k=2}^n{kC_n^k{x^{k-1}}}$;(注:$\sum_{i=1}^n{{a_i}={a_1}+{a_2}+…+{a_n}}$)
(2)求$C_{10}^1+2C_{10}^2+3C_{10}^3+…+10C_{10}^{10}$;
(3)求${1^2}C_{10}^1+{2^2}C_{10}^2+{3^2}C_{10}^3+…+{10^2}C_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{x}$-kx(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是(0,$\frac{{e}^{2}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简下列各式:
(1)sin(3π+α)+tan(α-π)sin($\frac{π}{2}$+α)
(2)$\frac{1-tan15°}{1+tan15°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$sin\frac{a}{2}=\frac{4}{5},cos\frac{a}{2}=-\frac{3}{5}$,则sina等于(  )
A.$\frac{6}{25}$B.$-\frac{24}{25}$C.$-\frac{12}{25}$D.$-\frac{6}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方形ADMN与矩形ABCD所在平面互相垂直 AB=6,AD=3
(Ⅰ)若点E是AB的中点,求证:BM∥平面NDE;
(Ⅱ)若BE=2EA,求三棱锥M-DEN的体积.

查看答案和解析>>

同步练习册答案