精英家教网 > 高中数学 > 题目详情

【题目】某校高二(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入(元)与时间(天)的部分数据如下表所示,已知日销售(斤)与时间(天)满足一次函数关系.

(1)根据提供的图象和表格,下厨每斤水果的收入(元)与时间(天)所满足的函数关系式及日销售量(斤)与时间(天)的一次函数关系;

(2)用(元)表示销售水果的日收入,写出的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?

【答案】1见解析2)在第十天时日收入最大,最大值为90.

【解析】试题分析:(1)可设,由线段过点 ;的值,由线段过点 的值,从而可得结果;(2)先求出销售水果的日收入的函数关系式,利用二次函数分别判断出,两段函数的单调性,利用单调性分别求出最大值,再比较大小即可.

试题解析:1)依题意可设,当时,线段过点

时,线段过点 .

所以.

,由表中数据得,所以.

2)由

时, 上的单调递增,在上单调递减,所以当时, 有最大值为元;当时, 上单调递减,所以.

综合上述得:在第十天时日收入最大,最大值为90.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求函数y= 的定义域、值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是依次等量减小的,则正中间一尺的重量为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 分别为等差数列和等比数列, 的前项和为.函数的导函数是,有,且是函数的零点.

(1)求的值;

(2)若数列公差为,且点,当时所有点都在指数函数的图象上.

请你求出解析式,并证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次水下考古活动中,某一潜水员需潜水50米到水底进行考古作业,其用氧量包含以下三个方面:

①下潜平均速度为米/分钟,每分钟的用氧量为升;

②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.3升;

③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升;潜水员在此次考古活动中的总用氧量为升.

(1)如果水底作业时间是10分钟,将表示为的函数;

(2)若,水底作业时间为20分钟,求总用氧量的取值范围;

(3)若潜水员携带氧气13.5升,请问潜水员最多在水下多少分钟(结果取整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,椭圆的长轴为短轴,且与有相同的离心率.

(1)求椭圆的方程;

(2)设为坐标原点,点分别在椭圆上, ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是定义在(﹣∞,+∞)上的奇函数,且满足
(1)求实数a,b,并确定函数f(x)的解析式
(2)用定义证明f(x)在(﹣1,1)上是增函数.

查看答案和解析>>

同步练习册答案